
Adaptive Intelligence for Batteryless Sensors Using
Software-Accelerated Tsetlin Machines

Abu Bakar
∗†

Georgia Institute of Technology

Atlanta, USA

abubakar@gatech.edu

Tousif Rahman
∗†

Newcastle University

Newcastle upon Tyne, UK

s.rahman@newcastle.ac.uk

Rishad Shafik

Newcastle University

Newcastle upon Tyne, UK

rishad.shafik@newcastle.ac.uk

Fahim Kawsar

Nokia Bell Labs and University of

Glasgow

Cambridge, UK

fahim.kawsar@nokia-bell-labs.com

Alessandro Montanari

Nokia Bell Labs

Cambridge, UK

alessandro.montanari@nokia-bell-labs.com

ABSTRACT
Tsetlin Machine (TM) is a new machine learning algorithm that

encodes propositional logic into learning automata—a set of log-

ical expressions composed of boolean input features—to recog-

nise patterns. The simplicity, efficiency, and accuracy of this logic-

based algorithm encourage rethinking the application of traditional

arithmetic-based neural networks (NNs) in intelligent sensors de-

sign. Indeed, TM is a promising candidate for embedding intelli-

gence into tiny batteryless sensors with the potential to address

two critical challenges: (1) computing under resource constraints

and (2) demand for dynamic adaptation to the unpredictable na-

ture of harvested energy. However, its structural model complexity

manifests in two conflicting issues: large memory footprint and

long latency. This paper addresses these shortcomings by proposing

adaptive compression techniques exploiting the inherent redun-

dancies observed in trained models. Through dynamically scaling

the computational complexity based on available energy, our tech-

niques significantly reduce the memory footprint and speed up the

runtime execution. We evaluate our techniques against standard

TMs and binarized neural networks (BNNs) for vision and acoustic

workloads deployed on a TI MSP430 MCU operating under inter-

mittent power supply conditions. We show that our techniques can

achieve up to 99% compression of TM models and offer 13.5× la-

tency and energy reductions when compared with the most efficient

neural network configuration without compromising accuracy.

CCS CONCEPTS
• Software and its engineering→Embedded software; •Com-
puting methodologies → Neural networks; • Hardware →
Analysis and design of emerging devices and systems.
∗
Both authors contributed equally to the work.

†
Work done while both authors were at Nokia Bell Labs, Cambridge (UK).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SenSys ’22, November 6–9, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9886-2/22/11. . . $15.00

https://doi.org/10.1145/3560905.3568512

KEYWORDS
Tsetlin Machines, Neural Networks, Energy Efficiency, Intermittent

Computing, Battery-free.

ACM Reference Format:
Abu Bakar, Tousif Rahman, Rishad Shafik, Fahim Kawsar, Alessandro Mon-

tanari. 2022. Adaptive Intelligence for Batteryless Sensors Using Software-

Accelerated Tsetlin Machines. In The 20th ACM Conference on Embedded
Networked Sensor Systems (SenSys ’22), November 6–9, 2022, Boston, MA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3560905.3568512

1 INTRODUCTION
Harvested ambient energy from solar, kinetic, radio frequency, or

other sources has the potential to enable autonomous operation

of batteryless sensors making edge applications maintenance-free

and long-lived for a sustainable future [16, 48]. However, these

devices are impractical without the pairing of an ML model which

can compute meaningful results directly on the sensor, without the

need for high-energy data transmission to the cloud [1, 12, 39].

Recent advances in software framework optimisations made

deep neural networks (DNNs) the favoured approach to embed

intelligence into microcontrollers given their high accuracy on

complex tasks, such as vision and acoustic classification [12, 20, 25,

29, 38, 39]. The TinyML community has focused on addressing two

main challenges faced when deploying DNNs on microcontrollers:

large memory footprint and high latency. Techniques like weights

quantisation [21], pruning and layer decomposition [22, 30], or

neural architecture search [28, 29] could alleviate these issues by

ensuring that models fit in memory and increasing execution speed.

Nevertheless, they suffer accuracy drops when heavy compression

is applied and require significant offline processing to produce and

fine-tune these models [6, 15, 28, 29, 52].

Previous works on efficient DNNs deployment typically con-

sider relatively powerful microcontrollers with 32bit architectures,

floating point units (FPUs), SRAM up to 512kB and running at

frequencies of 100MHz or higher. They also assume a constant

power supply from a battery [28, 29]. These characteristics allow

powerful models to run on such small devices. However, when

considering batteryless systems, power efficiency is of paramount

importance since the operation is supported only by nominal har-

vested energy. Hence, much smaller and efficient MCUs are used.

For example a MSP430FR5xxx [19], a standard series of MCUs for

https://doi.org/10.1145/3560905.3568512
https://doi.org/10.1145/3560905.3568512

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

running intermittently-powered applications, has a 16-bit architec-

ture, runs at maximum 16MHz, has no FPU and supports up to 8kB

of SRAM, making DNN deployments even more challenging.

Another critical challenge of deploying DNNs on batteryless

sensors is that energy is scarce, intermittent, and unpredictable, as

such the device can suffer several power failures during a single

inference. DNN models, typically monolithic, are unable to flexibly

adapt to fluctuating energy availability, and once trained, they pro-

duce inferences only when there are enough resources (i.e., energy)

to execute the entire model. While intermittence-safe implemen-

tations can guarantee that an inference could span several power

failures [12], they do not automatically enable existing models to

produce a valid output that meets the instantaneous energy en-

velope. Recent works started exploring this avenue but still incur

significant inference latency [3, 20, 38]. A recognition approach that

could easily scale to very resource constrained devices and natu-

rally adapt to fluctuating energy availability is still highly desirable

for batteryless systems.

To find an approach that satisfies the requirements of a battery-

less system we turn our attention towards a logic-based learning

algorithm called the Tsetlin Machine (TM), which is an emerging

machine learning algorithm utilising the principles of learning au-

tomata and game theory [13]. The TM’s inference routine uses

propositional logic as opposed to arithmetic operations, which

makes it a less computationally intensive and energy frugal alter-

native to traditional artificial neural networks (§ 2). Despite the

algorithm still being far from the level of sophistication of artifi-

cial neural networks, which have enjoyed more than 60 years of

development from the Rosenblatt’s Perceptron [44], several works

reported promising results for Tsetlin Machines, especially in situ-

ations when the efficiency of the models is of utmost importance.

Infact, in the last few years, extensive effort is being dedicated

to studying the modeling and recognition performance of TMs

compared to deep neural networks. TMs have demonstrated com-

petitive performance compared to DNNs when applied to standard

ML benchmarks [11, 13, 14, 27, 46] as well as applications like nat-

ural language processing [5, 45, 51], audio classification [26] and

biomedical recognition [41].

In this work, we make the first step towards understanding if

TMs could represent a viable option for recognition tasks in the

very constrained environment of intermittently-powered systems.

The architectural simplicity makes TM a promising candidate for

intermittently-powered systems. From a developer perspective, it

makes writing task-based applications, usually a daunting exercise

for developers [32, 53], significantly simpler. From an efficiency per-

spective, since the computation of each class is independent of one

another (contrary to the case with neural networks), no data has to

be transferred in-between different computational units back and

forth. Hence, only a small portion of the memory needs to be writ-

ten to the non-volatile memory and restored at each power cycle,

minimising the overhead introduced by power-failure-agnostic run-

times [53]. Nevertheless, TMs still suffer from substantial memory

footprint and latency when deployed on constrained sensors [26].

To address these issues, we present the design and implementa-

tion of Lite-TM, a novel framework to enable the deployment of

practical TM models on intermittently-powered systems. Lite-TM

is built around three core techniques which: (1) reduce the memory

footprint of a TM model, (2) speed up model execution, and (3)

dynamically scale model complexity based on available energy. The

first technique is based on the observation that the actual states of

the Tsetlin Automata, the only memory elements required for TMs,

are not necessarily used at run time for inferences, hence can be

efficiently encoded to save memory. We then achieve a substantial

reduction in inference latency by determining at deployment time

which clause logic propositions, the computational elements of TMs,

do not need to be executed at inference time because their output

is already determined and does not depend on the current input.

Finally, we enable TM models to adapt inference quality in propor-

tion to the instantaneous energy supplied by ranking the clause

propositions based on their contribution to a correct prediction and

dropping less useful ones when energy is scarce. We evaluate our

framework on realistic vision and acoustic datasets [23, 49] show-

ing significant memory and latency improvements over the vanilla

TM implementation and state-of-the-art binarized neural networks

- e.g. 98.9% compression with 13.5× speedup for our CIFAR image

recognition dataset. Additionally, when powered with real RF and

solar energy harvesters our adaptation approach increases the in-

ference throughput by up to 2.2× compared to static models while

ensuring a maximum accuracy drop of less than 2.4%.

In summary, our contributions are the following:

• A novel framework for automated deployment of efficient and

adaptive Tsetlin Machine models on intermittently-powered bat-

teryless systems.

• Two encoding techniques to improve TMs’ memory usage and

latency without a drop in accuracy based on a newly discovered

characteristic of trained TM models.

• A run-time adaptation technique to manipulate TM model com-

plexity in accordance with variable energy.

• A detailed comparison of optimised TMs with state-of-the-art

embedded binarized neural networks (BNNs) with constant and

intermittent power from realistic scenarios.

This work represents a first step toward exploring an alternative

classification algorithm to deep neural networks for intermittently-

powered systems. Our findings demonstrate that using our pro-

posed approaches, practical TM models can be deployed on em-

bedded and batteryless devices achieving accurate predictions with

high energy efficiency.

2 BACKGROUND AND RELATEDWORK
2.1 Intermittent Computing
The vision of ubiquitous computing will require sensors to harvest

ambient energy to ensure a long lifetime and low maintenance cost.

The sporadic availability of harvested energy makes the continuous

execution of the programs impossible [31]. Devices accumulate

energy in a capacitor and run programs only when the level of

charge is sufficient to keep the device operating. When the en-

ergy is depleted the device switches off until the next charging

cycle is complete, resulting in very short uptime periods (e.g., few

milliseconds) and potentially long downtimes (e.g., hours). This

hampers the use of conventional programming models, designed

for continuously-powered devices, to run correctly on batteryless

Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines SenSys ’22, November 6–9, 2022, Boston, MA, USA

sensors as the memory consistency and forward progress are com-

promised due to frequent power failures.

Intermittent computing models preserve forward progress and

ensure memory consistency by inserting checkpoints throughout

the program code.When a power failure is approaching, the content

of volatile memory is stored in non-volatile memory, and the execu-

tion is restored from the same point when the device reboots after a

power outage. Several models exist to ensure memory consistency

and robustness to sudden power failures [4, 17, 32, 42, 53], however,

they typically lead to significant memory and latency overhead due

to the continuous store/restore process.

2.2 Efficient and Adaptive Machine Learning
Deep Neural Networks (DNNs) have shown impressive perfor-

mance on different recognition tasks, ranging from visual and

acoustic understanding to human activity recognition, and are now

becoming the preferred choice for adding intelligence to resource-

constrained devices [35, 36]. Deploying such models, however,

comes with significant challenges. In fact, several techniques have

been proposed to modify traditional DNNs with the goal of fitting

them inmemory, increasing execution speed, and decreasing energy

demand. Examples include pruning redundant weights and filters

during or after training and later fine-tuning the model in order to

decrease the model size without a high loss in accuracy [6, 15, 52].

Some of these techniques have been recently used to deploy DNN

models on intermittently-powered systems with the objective of

enabling useful applications (e.g., wildlife conservation, healthcare,

and agriculture) while significantly reducing data transmission over-

head [12, 20, 39]. However, these DNN workloads still come with a

significant burden in terms of resources they require, i.e., memory

and energy. In this paper instead, we adopt Tsetlin Machines (TMs),

a different learning algorithm that does not rely on heavy floating-

point arithmetic operations but is based on propositional logic and

game theory [13], promising more efficient inferences. We offer an

introduction to TMs and their fundamental components in §2.3.

A particularly important aspect when deploying machine learn-

ing workloads on intermittently-powered systems is their ability

to adapt to fluctuating harvested energy. The techniques men-

tioned above to scale DNN models for constrained devices aim

at reducing the complexity of a single model but do not consider

the problem of adapting the model execution to match variable

energy [6, 15, 28, 29, 52]. A few approaches have been proposed

to adapt DNN model complexity at runtime in mobile systems [9]

and in intermittently-powered systems [20, 38]. However, they ei-

ther require expensive and complicated training procedures [9]

or still suffer from large memory consumption or high-latency in-

ferences [20, 37, 38]. In this work, for the first time, we propose a

technique to adapt the complexity of a Tsetlin Machine model. Our

approach does not involve complex re-training steps, as often the

case for DNNs, but relies on intrinsic characteristics of a trained

TM model to skip computation at runtime.

2.3 Tsetlin Machines Primer
The Tsetlin Machine is an ML algorithm that uses a learning au-

tomata called Tsetlin Automata to form logic propositions with

booleanized input features and their complements. These logic

KEY

f0 literal f0 f1 literal f1 EXC literal f0

f1

f0 f1 EX
C

IN
C

Tsetlin Automata

3 5 1 4

State Numbers

f1f0 f0

1
2
3
4
5
6

Input Features

Booleanizer

Boolean
Features

Clause

f0

f1

f0

f0
f0

f1
f1

f1

Clause
Output

Boolean Literals

0/1

INC literal f1f1 f0

Pre-processing

Figure 1: Tsetlin Automata and the Clause unit.

Tsetlin Machine

Class 0

Clause
0

Clause
1

Clause
N

...

+ - -

Sum all Class
Votes

Classification =
Class with most

votes

Feedback to the
TAs for each

Clause

Class 1

Clause
0

Clause
1

Clause
N

...

+ - -

Class N

Clause
0

Clause
1

Clause
N

...

+ - -...

Repeat for next
Boolean

datapoint

Figure 2: Tsetlin Machine Architecture.

propositions are used to determine the classification. In this section

we offer an overview of the core components of the TM through Fig-

ures 1 and 2. Then show how these are algorithmically implmented

through Algorithm 1.

Figure 1 shows the typical input pipeline and two of the fun-

damental elements of the TM: the Tsetlin Automata (TA) and the

Clause. The first fundamental difference separating TMs from tra-

ditional NNs is the need for booleanization of the input data. This

differs from binarization as there is no longer any notion of place

value, i.e., if a floating point number is binarized to 4 bits it will

have a most significant bit and least significant bit (1100), after

booleanization it will be considered as individual bits (1,1,0,0). This

is then converted to boolean literals where each element is recorded

along with its binary negation (1,0,1,0,0,1,0,1) and used for clause

computation. Therefore booleanization of the raw input data allows

the user to control the granularity of the inputs i.e., the number of

boolean literals.

Looking more into the details of a TM (Figure 1), each Tsetlin

Automaton has a finite number of states, half of which correspond

to Include and the other half corresponds to Exclude. The TAs can
either be viewed by their state numbers (1 to 6 as seen in Figure 1) or

by their binary include and exclude decisions. A TA is instantiated

for every Boolean feature and its complement. This is referred to

as the Boolean Literal. The Boolean Literals and their respective TA

include/exclude decisions are used to create the propositional logic

seen through the clause.

The clause represents the main element in the computational

path that leads from the input data to the output classification.

Clauses implement a fixed logic proposition as depicted in Figure 1.

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

Algorithm 1: High Level Pseudo-code for TM inference.

1 Input : 𝑀,𝑁,𝐶, 𝐿

/* 𝑀 - no. classes, 𝑁 - no. clauses, 𝐶 - clause

model, 𝐿 - input boolean literals */
Output : 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠
/* Evaluate the first class sum (Class 0). Clause

computation is done using the logic block shown in
Figure 1 (right). */

2 𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 ← 0; 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠 ← 0;

3 for 𝑗 ← 0 to 𝑁 do
4 𝑜𝑢𝑡 ← clause_output(𝐶0

𝑗
, 𝐿) // 1 bit clause output

/* Dealing with clause polarity: */

5 𝑗 mod 2 ? (𝑜𝑢𝑡 ← 𝑜𝑢𝑡) : (𝑜𝑢𝑡 ← −𝑜𝑢𝑡);
6 𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 = 𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 + 𝑜𝑢𝑡 ;
/* Evaluate remaining classes’ class sums. */

7 for 𝑖 ← 0 to𝑀 − 1 do
8 𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 = 0;

9 for 𝑗 ← 0 to 𝑁 do
10 𝑜𝑢𝑡 ← clause_output(𝐶𝑖

𝑗
, 𝐿) // 1 bit clause output

11 𝑗 mod 2 ? (𝑜𝑢𝑡 ← 𝑜𝑢𝑡) : (𝑜𝑢𝑡 ← −𝑜𝑢𝑡) ;
12 𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 ← 𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 + 𝑜𝑢𝑡 ;
13 if 𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 > 𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 then
14 𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚 ← 𝑛𝑒𝑤_𝑐𝑙𝑎𝑠𝑠_𝑠𝑢𝑚;

15 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠 ← 𝑖

The number of clauses is a parameter the user will configure. Typi-

cally, higher clauses result in better accuracy as there is a greater

likelihood of the TM finding the right propositions. Through the

training process, the TM will attempt to find the best configuration

of include/exclude decisions for the TAs such that a correct classifi-

cation can be made after the clause computation. The simplicity of

the main TM building blocks and the fixed structure of the clauses

are the main aspects that make TMs suitable for constrained devices

and amenable to be implemented on specialised silicon chips.

Figure 2 shows the complete architecture of a TM model. The

clauses are grouped together for each class with an equal number

of clauses per class. The clause outputs are multiplied with an alter-

nating positive or negative polarity (pink circles in Figure 2) and

summed for each class. The polarity allows each clause to learn

both supporting and opposing propositions for their respective

class. Upon summing the class votes across the whole system, the

classification becomes the class with the most votes. The computa-

tion stops here at inference time. At training time instead, based on

predicted and actual class, Feedback is given to each TA to transition

their state. The process repeats for all boolean data points with

the convergence of the TM typically occurring within the first few

epochs [26]. Describing the details of the TM’s training procedure

is outside of the scope of this paper since we focus on optimising

the inference procedure. For this work we rely on the standard TM

training procedure as defined by Granmo [13].

Algorithm 1 offers a high-level look into how the TM’s inference

process can be implemented. As seen, the process is driven by

calculating the class sum for each class. The sum itself is created by

computing clause outputs as shown by the 𝑐𝑙𝑎𝑢𝑠𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 function,

which represents the compute happening in Figure 1. Following the

clause computation, the polarity of the clause is used as a multiplier;

the clauses of positive and negative polarity are organised in an

alternating manner (as seen with Figure 2). The class sums are

iteratively computed, and the max sum is the classification.

2.4 Benefits and Challenges of
Intermittently-Powered Tsetlin Machines

Focusing on the hierarchical architecture of the TM in Figure 2,

we observe how, from an intermittent-execution perspective, TMs

allow for greater choice over task division. The developer can de-

fine tasks at the TA level, clause level, or class level depending on

the application scale. This flexibility is important for task-based

intermittently-powered systems [32, 53] as it minimises the over-

head, and simplifies the selection of appropriate task division: both

crucial aspects to consider to ensure the forward progress of the

application. Additionally, since the computation of each unit is inde-

pendent of the other, the data transfer between the units is minimal,

unlike conventional neural networks. Hence, if the execution is

interrupted by a power failure, there is only a small portion of the

memory that needs to be written to the non-volatile memory and

restored after power-up, reducing potential latency overheads.

While the logic-based clause propositions offer both complex-

ity reduction and energy efficiency potential, in order to achieve

sufficiently high accuracy, we must increase the number of clause

instances in the system, consequently increasing memory and la-

tency costs [13]. Much like the weights in DNNs, the number of

TAs contributes to the main memory footprint of TM models. The

size of a TM is defined as the number of TAs, also written as the

number of classes × number of clauses × number of Boolean literals.

An increase in any one of these terms will result in a substantial

increase in the number of TAs. For example, increasing the number

of clauses for better accuracy, increasing the number of classes for

larger problems, or increasing the number of boolean literals for

problems that require more granular feature representation will

all have a significant effect on the model size and its latency, far

exceeding the capacity of a typical batteryless MCU [19]. We will

study this tradeoff more in detail in §8. Therefore it is paramount

that memory compression and latency reduction are explored.

Exploiting the boolean nature of TM models, simple run-length

encoding (RLE) has been used for model compression [2]. How-

ever, RLE is naive and not scalable across different datasets which

might present complex include/exclude patterns resulting in RLE

not compressing the model to its maximum potential. Additionally,

while RLE can achieve good memory compression, it does not im-

prove the latency (and energy efficiency) of the models sufficiently

to compete with optimised binary fully connected networks [2].

In this work instead we propose a complete framework and two

novel techniques that further improve memory compression (𝜇TM

presented in §4) and significantly reduce latency (𝛼TM presented

in §5) compared to the RLE-based approach presented in [2]. We

also introduce a method to make TM models adaptive (in terms of

latency and energy consumption) to fluctuating energy availability

(see §6), which was not considered in [2]. We offer a comparison

between the compression approaches introduced in this work and

the technique from [2] in §8.

Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines SenSys ’22, November 6–9, 2022, Boston, MA, USA

User Inputs: Training Hyperparameters Memory/Latency Drop Clauses

Train Tsetlin Machine

Memory/
Latency

Encoder

Encoder

Memory

Latency

 TM

 TM

Generated TM Model: TM / TM

Inference on Training Data

Clause
Weights

Training
Hyperparameters

Training Data

Offline Training and Encoding

Separate the
Positive and

Negative Clauses

Rank separated
Clauses

Ordered
TM

Write raw TA
states to file

Extract
Inc/Exc

TA states

On Device Inference

No

Yes
Drop Clauses

Scheduler

Available Energy

Inference Inference

TM Model

Lite-TM System Overview

Drop
Clauses?

Figure 3: Framework for the automated transition of Tsetlin Ma-
chines from training to optimised inference on microcontrollers.

3 Lite-TM OVERVIEW
We have mentioned in the previous section (and we will see in more

detail in § 8) that when TMs are naively deployed on intermittently-

powered devices, they suffer from a large memory footprint and

result in slow inferences. Moreover, similar to DNNs, vanilla TMs

can produce a valid inference only when there is sufficient energy

to execute the entire model (i.e., all clauses for all classes).

In this work we propose Lite-TM, a framework specifically de-

signed for training and deploying TM models on intermittently-

powered devices. The framework is built on top of three novel

techniques to (1) reduce the memory footprint of a TM model en-

abling its deployment on constrained devices; (2) speed up model

execution ensuring efficient inferences within the minimum energy

budget; and (3) enable the model to flexibly adapt its computational

complexity (i.e., latency) to accommodate variable energy.

At the core of the framework, we develop a pipeline that auto-

mates the transition from a trained TMmodel to the deployment on

a microcontroller. Our pipeline allows the user to decide whether to

place precedence on either minimising memory footprint to scale

to larger recognition tasks, or minimising inference latency where

energy efficiency is paramount. Once the model has been optimised

for either memory footprint or latency, the user can optionally en-

able runtime adaptation to scale the model complexity at runtime.

The pipeline block diagram is presented in Figure 3.

3.1 Training
Focusing on Figure 3 (top), the first step to use TMmodels on MCUs

is to train a model with a given dataset. In our framework, the

training of a TM model follows the standard procedure designed by

Granmo et al. [13]. When the training is converged, our framework

then assigns weights to the clause propositions based on their

involvement in correct classifications by performing the inference

routine on the entire training dataset as seen in Algorithm 2.

Each datapoint in the dataset is passed through the model, and

a classification is produced for all of them. For each classification,

our framework inspects the output of all clauses. If the model clas-

sified the current datapoint correctly, meaning the predicted class

matches the actual class (i.e., 𝑝𝑟𝑒𝑑_𝐶𝐿 =𝐺𝑟𝑜𝑢𝑛𝑑_𝑇𝑟𝑢𝑡ℎ), the weight

Algorithm 2: ClauseWeighting – Used on every datapoint.

1 Input :𝑀 ;𝑁 ;𝐺𝑟𝑜𝑢𝑛𝑑_𝑇𝑟𝑢𝑡ℎ

/* 𝑀 - no. classes, 𝑁 - no. clauses, 𝐺𝑟𝑜𝑢𝑛𝑑_𝑇𝑟𝑢𝑡ℎ -

Actual Class */

2 𝑝_𝑊 ← 0; 𝑛_𝑊 ← 0; // positive and negative polarity

Clause Weights

3 𝑝_𝐶 ; 𝑛_𝐶 ; // positive and negative polarity Clauses

4 𝑝𝑟𝑒𝑑_𝐶𝑙 ← 𝑇𝑀_𝑖𝑛𝑓 () ; // TM inference prediction

5 for 𝑗 ← 0 to𝑀 do
6 if (𝑝𝑟𝑒𝑑_𝐶𝑙 == 𝑗)𝑎𝑛𝑑 (𝑗 == 𝐺𝑟𝑜𝑢𝑛𝑑_𝑇𝑟𝑢𝑡ℎ) then
7 for 𝑘 ← 0 to 𝑁 do
8 if 𝑝_𝐶 𝑗

𝑘
== 1 then

9 𝑝_𝑊
𝑗

𝑘
+ +;

10 if 𝑛_𝐶 𝑗

𝑘
== 1 then

11 𝑛_𝑊
𝑗

𝑘
− −;

12 if (𝑝𝑟𝑒𝑑_𝐶𝑙 == 𝑗)𝑎𝑛𝑑 (𝑗 ! = 𝐺𝑟𝑜𝑢𝑛𝑑_𝑇𝑟𝑢𝑡ℎ) then
13 for 𝑘 ← 0 to 𝑁 do
14 if 𝑝_𝐶 𝑗

𝑘
== 1 then

15 𝑝_𝑊
𝑗

𝑘
− −;

16 if 𝑛_𝐶 𝑗

𝑘
== 1 then

17 𝑛_𝑊
𝑗

𝑘
+ +;

for clauses with positive polarity is incremented by one, while the

weight for clauses with negative polarity is decremented. Instead,

if the model produces a wrong classification, the weight for clauses

with negative polarity is incremented, and the weight for clauses

with positive polarity is decremented i.e., the opposite of when the

class is predicted correctly. This is repeated for every data point

to generate the clause weights. High-weighted positive polarity

clauses are effective in supporting a classification for the class it

belongs to, whereas high-weighted negative polarity clauses are

effective in opposing a classification for the class it belongs to. We

separate the positive clauses and negative clauses and rank them

separately, we then join the two ranked clauses in the same signed

ordering as shown in Figure 3. The separation of clauses into the two

clause types (positive and negative) keeps track of polarity, this be-

comes a vital aspect in the inference where the ranked clause must

be multiplied with its appropriate sign multiplier. After this, we

write the TA states for this newly ordered TM to file (Ordered TM).
This is the TM model that will be encoded and deployed on-device.

The clause ordering we propose here is a computationally simple

operation that needs to be performed only once after the model has

been trained. However, it is crucial to enable inference complexity

adaptation while ensuring a minimal accuracy drop. In fact, clauses

with a lower contribution to a correct classification can be dropped

earlier. We will see in more detail in §6 and §8 how we utilise the

ordering to design an adaptive TM model and how this translates

to latency reduction with limited accuracy degradation.

3.2 Encoding
In the next step of the pipeline, we introduce two encoding tech-

niques for the TA states as a way to remedy the large model sizes

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

post-training and reduce inference latency. Both encoders in our

framework exploit a fundamental property of the clause-based

learning mechanism in the TM, i.e., the number of TA exclude deci-

sions for literals far outnumber the number of TA include decisions.

This occurs through the feedback process and is an important design

choice as clauses pick out only a few key features and thus are less

prone to overfitting. This results in a sparse boolean space that can

undergo lossless compression into memory- and latency-optimised

data structures using our encoders. Both encoders reduce the mem-

ory footprint compared to a vanilla TM but Micro TM (𝜇TM) is

particularly designed to optimise memory usage while Accelerated

TM (𝛼TM) specifically reduces latency (more details in §8). The

user can select the trade-off between memory and latency for their

application. This generates either the 𝜇TM or 𝛼TM models which

are then deployed on the target microcontroller. While the two

encoding approaches are currently mutually exclusive, the user can

still decide to encode the same model with both approaches and

then at runtime select which one to use based on the application

requirements (e.g., faster inference or reduced memory footprint

during inference). As we will see more in detail in §8 this is en-

abled by our encoding schemes, which both significantly reduce the

model size allowing to store more than one model on the limited

flash memory of a batteryless device. We leave the fusion of the

two encoding schemes into a single one for future work.

3.3 Inference
After the encoding, the model is ready to be deployed. When the

model is compiled for the target hardware platform, the appro-

priate runtime components to support 𝜇TM, 𝛼TM or both models

are linked with the user application. Additionally, if the user re-

quires to adapt the model complexity based on available energy, the

Scheduler running on the device will estimate the amount of en-

ergy currently being harvested and select which clauses to drop to

improve the system throughput. The clauses are dropped in reverse

order compared to the weights computed at train time. Hence, the

clauses that contribute the least to a correct prediction are dropped

first. We will see in §8 how this approach increases the number of

inferences completed in a unit of time while ensuring a minimal

drop in accuracy. Notice that the adaptation technique we propose

is independent of the two encoding schemes and can be applied on

top of each of them or, disabled entirely.

The next three sections will present the two TM encoding meth-

ods and the runtime adaption that is achievable through dropping

ordered clauses. It is important to state that while other compres-

sion schemes are possible, the designed schemes offer the best

methods of compression based on TA decision sparsity and retain-

ing as much spatial information from the original space, i.e. ability

to refer back to the class and the clause polarity.

4 MEMORY-COMPACT TM: 𝜇TM
The first encoding technique is called micro TM (𝜇TM) and it is

designed to minimise the memory footprint of the model as much

as possible. At the foundation of the 𝜇TM encoding, there are two

intrinsic properties of TM models: 1) there is no need to store the

actual value of each TA state but just their binary include/exclude

0 1 0 0 1 1 1 ... 0

Key

Packet Size (N)

0 0: N-2 bits represent number of 00s
0 1: N-2 bits represent number of 01s
1 0: N-2 bits represent number of 10s
1 1: N-2 bits represent number of 11s

Get 1st and 2nd Bit Find sequence length* Fill Packet

For Packet Size (int8, int16, int32):

Key

Iterate the TA states:

Append Packet to
Encoded Array* Max sequence length = (N-2) where N is Packet Size

Encoded Array = []

Example:
TA states :

00000011 01000100 11000100 10000101 00000100

3 4 4 45

Encoded Array (int8) = [3, 66, 196, 133, 4, 133]

000000 01010101 11111111 1010101010 00000000 1010101010

10000101

5

TA states (int8 representation): 50 bytes
TA states (bit representation): 50 bits

(6 bytes)

Figure 4: Micro TM (𝜇TM) encoding method and packet structure
(top). Toy example that demonstrates how a set of TA states is en-
coded (bottom).

decision, and 2) typically the number of exclude decisions far out-

number that of the include decisions
1
. This implies that if we rep-

resent exclude with 0 and include with 1, we will observe repeating

patterns with very large runs of 0s separated by a single or few 1s.

This is demonstrated in Figure 5 depicting the extracted TA states

post-training for a keyword spotting (KWS) model. In a TM where

each TA has 200 states and there are 45240 TAs altogether, only 84

TAs are include decisions. The substantial imbalance between the

include and exclude decisions allow for very large runs of excludes

separated by few includes, enabling significant compression ratios

to be achieved. We are the first group to empirically observe this

characteristic of TM models and to exploit it to design encoding

schemes to efficiently represent TM models for on-device inference.

From these novel observations, we design an encoding scheme

based on run-length encoding [43] as presented in Figure 4. The

idea is that instead of simply tallying the runs of the 1s and 0s in

the TA states sequence, as done with the traditional run-length

encoding (RLE) [2], we count the number of repeating sequences of

two bits (i.e., 00, 01, 10 or 11). In practice, for the three integer types
(int8, int16, int32), the TA states of the trained model are iterated

and for each 2-bit pattern (i.e.,Key), packets are filled with theKey
and the length of the sequence. The packets are then appended

to the Encoded Array as shown in the top part of Figure 4. As

shown by Figure 4 we create the Encoded Array for each packet

size. From these arrays, we use the encoded array that provides

the best compression, i.e., has the fewest elements compared to the

original TA states.

This method offers two advantages over the traditional run-

length encoding [2]. Firstly, with 𝜇TM we can cater for alternat-

ing runs of 1s and 0s using the Key whereas for traditional run-

length encoding we would have to store each alternating TA state

into its own integer packet, as done in [2], resulting in a lower

compression ratio. The encoding of alternating states is an impor-

tant design choice for addressing datasets where there are more

1
We remind the reader that in a TM model, the TA states completely define the model.

In other words, all TA states need to be stored on-device to execute inferences on

input data (somewhat analogously to weights in a neural network).

Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines SenSys ’22, November 6–9, 2022, Boston, MA, USA

includes. Secondly, when decoding, the Key allows for two TA

states to be decoded at once, benefitting inference latency. In fact,

the FRAM—used to store program code and non-volatile program

state—on MSP430FR5xxx MCUs, is much slower than the on-chip

SRAM and the compiler inserts wait cycles if there is a mismatch

between the system clock and FRAM max speed. Hence, high com-

pression ratios result in a reduced number of memory operations

and consequent reduction in latency against vanilla TMs (see §8).

It is also worth highlighting that we choose an RLE-based com-

pression approach because of the trade-off between compile-time

compression ratio and run-time decoding latency. The simplicity of

𝜇TM allows for faster decoding and therefore an energy-efficient

inference.

Additionally, notice that this is a lossless compression since the

original include/exclude sequence can always be recovered, result-

ing in zero accuracy loss at inference time. This is a crucial feature of

our framework because it ensures that the same accuracy achieved

by the model at training time will be conserved at inference time.

An important aspect when designing and deploying recognition

tasks on severely constrained devices.

5 ACCELERATED TM: 𝛼TM
The process of encoding is useful in reducing the memory footprint

of the model but places an additional decoding overhead on the

inference process. Therefore we also propose an encoding scheme

designed to reduce the total inference latency as much as possible.

We refer to this encoding as 𝛼TM. Both 𝛼TM and 𝜇TM encoding

methods can provide upwards of 90% model size compression, but

we design 𝛼TM for greater benefits in terms of latency reduction.

The reduction in latency is possible through the role of the

include in the clause proposition as seen in Figure 5 (right). When

calculating the clause output the exclude states make the value of

the input literal redundant. Therefore only the includes need to

be calculated when evaluating the clause output. In other words,

if a TA state is an exclude (represented as a logic 0) the output of

the logic OR between that TA state and the corresponding input

literal will always be 1, regardless of the value of the literal, as

shown in Figure 5 (right). This means that at runtime, the clause

computations for exclude states can be avoided, saving time during

the inference. For include states instead, the value of the input literal

matters and needs to be carried forward in the clause computation.

This is beneficial from a latency perspective due to the very low

include to exclude ratio of trained models, as seen in Figure 5 (left).

Through exploiting this observation we create the 𝛼TM encoding

scheme as presented in Figure 6.

The basis of the encoding is centred on identifying the include

decisions in the TA states post-training. Once we find to which

literal, clause, and class each include state corresponds to in each

clause, we sequentially encode this information along with the

index of the next class to indicate where includes for a particular

class end. This is shown through the example in Figure 6 along

with a deconstruction of the TM such that each TA can be tracked

back to its corresponding class. Notice that each feature has two

literals, the feature itself and its negated form, and each literal has

its own TA state. This is represented in Figure 6 by the fact that

each feature in the Features array stretches across 2 TA states.

Extract TAs

TA
 S

ta
te

All TAs in the TM

0 20,000 40,000

100

150
125

75

All TA states for Key Word Spotting

0
25
50

175
84

Includes

Exc

Inc
f0

0 1

0/1

1

For Excludes:

Output becomes 1

For Includes:

f0

1 0

0/1

f0

Output becomes f0

Figure 5: Rationale for the encoding methods. Heavy imbalance be-
tween include and exclude states is exploited in 𝜇TM to reduce the
model size (left). Redundancy of computation for exclude states is
used in 𝛼TM to reduce inference latency (right).

0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0TA states:

F1 F2 F1 F2 F1 F2 F1 F2Features:

Clauses:

Classes:

Clause 1 Clause 2 Clause 1 Clause 2

Class 1 Class 2

C Offset for next class from current location

F

L

Feature Index

Include Literal Index

Include = 1 Exclude = 0

Using TA states above as the example:

TA states
Index: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 1 1 2 1 1Encoding:

Encoding
Index : 1 2 3 4 5 6 7 8 9

Class 3

Clause 1 Clause 2

F1 F2 F1 F2

0 0 0 0 1 0 0 1

1 2 1 2 1 2 1 2

...

T Length of the next section of <F, L> Encoding
Method:

F L F L F L... TT

For the Clauses in this class

C

2 4

10 11 12 13 14 15 16 17 18

5 2 0

19 20 21

07 4 1 1 2 210

Figure 6: Accelerated TM (𝛼TM) encoding method.

The 𝛼TM, encoding starts with C indicating the offset of the next
class from the current location of the encoded array, observe that

in Figure 6 the encoded array starts with 10, as the next class is 10

elements along. Then T is used to signify the number of feature (F)
and corresponding literal (L) indexes present in each clause. For

example the first T element in the encoded array is 2, this indicates

there is only one feature and corresponding literal index in this

clause. Notice that in the case where there are no includes within a

clause this is indicated with a 0 in the T element. At runtime, we

then iterate through only the includes present in each literal when

performing the clause computations, hence, effectively skipping

computations and reducing latency.

Similar to 𝜇TM, this encoding scheme is lossless since we can

perfectly reconstruct the model after it has been encoded. Hence,

also 𝛼TM ensures the accuracy of the model is not altered after its

deployment on constrained devices.

6 POWER-AWARE ADAPTIVE TM
In the previous sections, we have described our encoding ap-

proaches to reduce the memory footprint and latency of TM

models. In this section, we introduce a complementary technique

to adapt the model complexity at runtime. Such technique can be

applied to both 𝜇TM and 𝛼TM models.

The core learning and computational element of the TM is the

clause proposition. The evaluation of clauses at runtime allows each

class in the TM to determine if a particular datapoint intersects

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

Application

RTC

Lite-TM Runtime
Model

Decoders

EH

SolarRadio

Heuristic
Adaptation

Unit
Scheduler

Energy
Estimation

Signals

MCU Platform
Peripheral DriversFRAM

Sensors

Task thread 1 Task thread 2

RF Harvester

Solar Harvester

Solar Cell

6.8mF Cap

50mF Cap
RTC

MSP430
Model 1 Model 2

Figure 7: Software components (left) and hardware setup (right).

Off Time > Off-Thresh

Off Time < Off-Thresh

On Time > On-Thresh

Time

En
er

gy
Ac

cu
ra

cy
Cl

au
se

s

Drop 10% Clauses

Accuracy Drops

Add 10% Clauses

Gains Accuracy

Energy
Estimation

Signals

Heuristic
Adaptation

Unit

On Time (Compute)
Off Time (Recharge)

Adapted
Task Graph

On Time
Off Time

Adapt Down

Adapt Up

Adapt Up

100% Clauses

Original Model
Accuracy

Figure 8: Adaptation policy runtime operation.

with it or not through the clause polarities used in the class sum.

Affecting the clauses (i.e., their number or the latency to compute

each clause) is the main approach to influencing the latency of the

entire model. In our adaptation approach, we do this by adding

weights to each clause proposition. Clause weighting is achieved

by running the TM’s inference process on the training data again

(using clause outputs for computing class sums and then selecting

the highest class sum for classification) after the training is com-

pleted. The the involvement of each clause can be tallied based

on the number of times it produces a clause output of 1 across all

datapoints in the training dataset as shown mentioned in 3. We

then rank the clauses in each class in descending order based on

their weights. This creates the ordered TA states model as seen

in Figure 3. Through this ranking, the most useful or ‘impactful’

clause propositions are placed first.

The benefit of this clause ranking is seen at runtime; based on

the available energy the framework can evaluate only a specified

number of clauses in each class, given the most impactful clauses

are evaluated first the accuracy degradation is minimal. We will

see in the next section how this enables a single TM model to

scale its latency at runtime to cope with fluctuating energy and

ensures optimal throughput. Note that the clause ranking itself

does not affect model size or latency as it only changes the order

of computations at run-time.

7 Lite-TM IMPLEMENTATION
In the previous sections, we have described the three main tech-

niques at the core of Lite-TM (Figure 3). They deal with how the

model is trained and encoded, hence, they operate offline, before

the model is deployed on the device. This section instead focuses on

the software components that run on-device, depicted in Figure 7.

Hardware We have implemented the on-device components of

Lite-TM on TI’sMSP430FR5994MCUwhich has 256KB of embedded

FRAM, 8KB of SRAM, and 16 MHz CPU speed. We also connect an

external RTC [33] to measure off-time for energy-aware run-time

adaptation as described below.

Execution Model: We build Lite-TM on top of a popular intermit-

tent executionmodel: InK [53]. In InK, applications consist of atomic

tasks—inside a task thread—that can do the computation, sensing,

or other actions, and have access to shared memory. InK schedules

these tasks and maintains memory consistency and progress of

computation across power failures. The simple architecture of TMs

makes task division easy without putting the burden on developers.

Leveraging the fact that the compute of the classes is independent

from one another, we choose an intuitive task division strategy and

put all the operations related to one class in one task. This ensures

minimal overhead for storing/restoring intermediate task buffers.

Input Booleanization:We use well-known and commonly used

booleanization methods to process the input to TM models. This is

done through either pre-defined functions such as Adaptive Thresh-
olding, quantile binning based on the distributions of each feature

or simply creating equally spaced fixed thresholds between the

maximum and minimum input values [26, 50]. These are compu-

tationally simple methods that run efficiently on small microcon-

trollers. While more sophisticated approaches could lead to better

recognition accuracy, their development is beyond the scope of this

paper and we leave it for future work.

Model Decoders: Since Lite-TM supports models encoded with

two different approaches (𝜇TM and 𝛼TM), the on-device runtime

needs to support the corresponding decoders. If all the models

within the application have been encoded with the same approach,

only the corresponding decoder is linked in order to save flash

memory on the target platform. Otherwise, both decoders need to

be available at runtime.

Adaptation Logic: The adaptation logic of Lite-TM is based on

REHASH [3]. The principle behind the adaption is to estimate the

amount of energy available from the environment and reduce the

model complexity (i.e., drop more clauses) if the energy is scarce,

and vice versa, add back the clauses if the energy is abundant.

Following the REHASH model, we use the device on-time and off-

time as estimates of available energy (i.e., adaptation signals). The

on-time represents the time when the device is active and executing

code, while the off-time is the interval during which the device is off

and the energy storage is recharging. We use the internal MSP430’s

RTC to measure the on-time while we employ an external RTC for

the off-time [33]. Alternative approaches to measure time while the

device is off include a remanence-based timekeeper [7, 18].

Figure 8 shows how the adaptation operates at runtime. Two

thresholds are configurable for the on-time and off-time, called

On-Threshold and Off-Threshold, respectively. At each reboot of the

system, the Heuristic Adaptation Unit will check the off-time and

if it is greater than the off-threshold, indicating that less energy

is being harvested, it will drop 10% of the clauses. Instead, if the

off-time is lower than the threshold it will add clauses back to the

model, if any were dropped previously, since more energy is being

harvested and the energy storage is recharging faster. Another

Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines SenSys ’22, November 6–9, 2022, Boston, MA, USA

Dataset
Network Architecture

FC. BNN Conv. BNN TM

MNIST
Layer1-512

Layer2-256

(96.97%)

Layer1-10

(95.55%)

200 Clauses

3136000 TAs

(95.13%)

CIFAR

Layer1-512

Layer2-256

Layer3-128

(80.91%)

Layer1-10

(85.39%)

1000 Clauses

4096000 TAs

(84.58%)

KWS
Layer1-512

Layer2-256

(85.42%)

Layer1-10

Layer2-10

(71.53%)

420 Clauses

2714400 TAs

(86.09%)

Table 1: BNN and TM model architectures, and accuracy for the
three datasets. LayerX-Y indicates layer number X, and Y neurons
for FC models and filters for conv. models, respectively.

important instance when the model can compute more clauses is

when the harvested energy is sufficiently high to keep the system

running continuously, without interruption. Hence, Lite-TM also

uses the on-time to detect such condition and add clauses back into

the model. The on-time is checked at the end of each inference.

This is a practical approach, with low overhead, to estimate

the current amount of energy available and it is used to take a

short-term decision on the next model configuration to run. Long-

term duty-cycling approaches [10] are not viable for battery-free

systems as energy is scarce and intermittent. Running inferences

more or less continuously whenever energy is available is a better

alternative to wasting energy on keeping the MCU in a sleep state

for long periods (seconds and minutes), which will deplete the

energy stored in the capacitor bank due to leakage.

8 EVALUATION
8.1 Experimental Setup

Datasets:We use three datasets for the evaluation:

MNIST [24] is a standard benchmark dataset composed of 70k

28x28 pixel images of handwritten digits.

CIFAR-2 is a 2-class variation of the common CIFAR-10

dataset[23] where we group all the vehicle images into one class

and all the animal images into another class. The dataset consists

of 60k 32x32 colour images which we convert to grayscale for our

evaluation.

Speech Commands (KWS) [49] includes 105k 1-second long

utterances of 35 spoken words. We use 6 keyword classes yes, no,
up, down, left, right for our evaluation.

Following common practices from the machine learning com-

munity, we use the MNIST dataset to establish a baseline for our

evaluation. The CIFAR-2 and Speech Commands datasets instead,

represent image and audio recognition tasks that could potentially

be achieved by low-power devices as the first classification stage

before triggering a more powerful system.

Models: Through hyperparameter search, we train three TM mod-

els, as reported in Table 1, which we then use for the evaluation of

Lite-TM. Several previous works showed the feasibility and benefits

of using DNNs on intermittently-powered systems [12, 20, 25, 38].

The high accuracy and the fact that, in most cases, there is no need

for feature engineering as in shallow classifiers, made DNNs the

preferred choice for complex tasks, such as image and audio classi-

fication, becoming the de facto standard for these tasks. Hence, to

appropriately compare Lite-TM with state-of-the-art recognition

systems we use deep neural networks as baselines. In particular,

given that TMs use booleans for the input data and the internal rep-

resentations, we select binary neural networks (BNN) as the closest

model to a TM. BNNs are the most energy/memory efficient class

of DNNs and given their binary nature are amenable for custom

HW implementation [40, 47]. These characteristics, in addition to

their high recognition accuracy, make BNNs a good baseline.

For our evaluation, we use the optimised implementation and

models provided byMcDanel et al. [34]. To date, this is the only open

source method of porting BNNs to resource constrained devices.

This implementation minimises the memory footprint of temporary

results; in a standard BNN the memory size of temporaries gener-

ated is equal to the output dimensions of the largest layer which

are stored in floating point form, McDanel et al’s implementation

reorders operations such that the size of temporaries can be stored

in binary. As described in § 2.4, the limited size of temporary buffers

is also a characteristic of TMs, making the comparison between the

two types of models fairer.

Given the difficulty in splitting DNN workloads into tasks, we

use task-tiling for the BNNs as done by Gobieski et al. [12]. Task-

tiling splits loop iterations into tasks executing a fixed number of

iterations. In our implementation, we compute one neuron and

apply one filter per task in fully-connected (FC) and convolutional

BNNs, respectively. This division might not be ideal as its optimi-

sation depends on the characteristics of each model (e.g., number

of layers and neurons/filters), deployment environment, harvester,

and the size of the capacitor. However, as we did for our TM im-

plementation, we opted for an intuitive task split that allows ap-

plication developers—having less domain-specific knowledge—to

write programs that can run intermittently without any memory

inconsistencies. Table 1 reports the BNNs and TMs details for each

dataset with their respective accuracy.

Performance Metrics: We use model size, model accuracy, run-

time memory, latency, and energy per inference as metrics to com-

pare TMmodels optimised with our framework against vanilla TMs,

RLE-TMs and the BNN baselines. We use the term vanilla TM to

refer to the standard TM inference algorithm as seen in [13] and

RLE-TM for models encoded with simple run-length encoding [2].

We offer evaluation with continuous and intermittent power

from solar and radio-based harvesters. The performance of our

adaptation technique is evaluated using the number of inferences

completed during a fixed interval and the drop in accuracy com-

pared to static models when the device is powered by variable

energy traces. For the on-device evaluation, we use the hardware

setup described in §7 and all the metrics (e.g. memory footprint,

latency and energy) are measured after models have been deployed

on the target MCU.

8.2 Memory Usage

Model Size: Our first evaluation results focus on comparing our

𝜇TM and 𝛼TM encoding methods against vanilla TM models. Since

the number of clauses is one of the main hyperparameters for TMs,

we train 10 models with an increasing number of clauses. This

allows us to study how the performance of the models changes in

relation to their recognition capacity. Figure 9 along with Table 2

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

Dataset
Encoding
Scheme

Compression Ratio with Different Clauses (C) %
0.2C 0.4C 0.6C 0.8C 1.0C

𝛼 71.40 93.00 95.50 96.20 96.30

MNIST
𝜇 90.40 96.70 97.60 97.80 97.90

CIFAR
𝛼 97.18 98.14 98.49 98.65 98.69

𝜇 98.37 98.63 98.78 98.89 98.90

𝛼 91.71 93.60 94.91 95.67 96.05

KWS
𝜇 95.87 96.67 97.24 97.58 97.74

Table 2: Compression ratio ofmodel size of 𝜇TMand𝛼TMcompared
to vanilla TMs for different clauses. C is different for each dataset.

40 80 120 160 200
Clauses

1

102

104

M
od

el
 S

iz
e

(K
B)

MNIST

Vanilla TM
 TM
 TM

200 400 600 800 1000
Clauses

1

102

104
CIFAR

120 240 360 480 600
Clauses

1

102

104
Keyword Spotting

MSP430 Memory

Figure 9: Model size of vanilla TMs compared with 𝜇TMs and 𝛼TMs
(Log scale on y-axis).

show the advantage of the two encoding methods on the model

size when compared to vanilla TM. Both encoding methods allow

the TM to scale to a larger number of clauses for the three datasets

without exceeding the MSP430 memory. The 𝜇TM offers the best

compression compared to vanilla TM across all three datasets with

𝛼TM always slightly higher but in the same range. For example, for

1000 clauses per class for CIFAR-2, 𝜇TM offers 98.90% compression

while 𝛼TM offers 98.69%.

For MNIST we notice that with a lower number of clauses (<80)

the size of models compressed with 𝜇TM and 𝛼TM is higher than

models with more clauses. This is due to the include to exclude

ratio. There is a larger proportion of includes to excludes when the

clauses are few and the problem is well defined. For models with a

small number of clauses, the key include literals are concentrated

close to each other, hence resulting in a lower compression rate.

Instead, when there is a greater number of clauses, the key include

literals are spread more evenly throughout the clauses and our

encoding schemes can achieve greater compression. This is visible

for MNIST which is a simpler dataset compared to the other two,

and where the TM can very easily pick out the key include literals

already with few clauses. Note that for more difficult classification

problems like CIFAR-2 and KWS the TM is unable to pick out as

many include literals. After sufficient clauses have been added to

the learning problem we notice that the number of includes starts

to saturate, this is seen across all three datasets where the model

sizes start to increase less rapidly for a larger number of clauses.

From Table 3, we also observe that 𝜇TM compression is always

better than run-length encoding as done in [2], with a model size

reduction of up to 41% for MNIST. On the contrary, the model size

of 𝛼TM is slightly higher than RLE models, but not excessively big

to prevent models to fit in the available memory. We will see later

in this section that even with lower compression ratio, 𝛼TM is the

most energy efficient of all thanks to its very low latency.

Memory Footprint: Figure 10 compares the overall memory foot-

prints of the encoded TMs and Vanilla TM with the baseline BNNs.

This includes: .text (code), .const (model), and .persistent (non-

volatile buffer and runtime management) sections of the memory.

Table 1 lists the BNN and TM models we use for comparison.

MNIST CIFAR KWS
0

40

80

120

M
em

or
y

Fo
ot

pr
in

t (
KB

)

Vanilla TM
Conv. BNN
FC BNN

 TM
 TM

.persistent

.const

.text

Figure 10: Memory footprint of 𝛼TM and 𝜇TM compared to vanilla
TM and BNNs. Vanilla TMs do not fit in the memory.

MNIST CIFAR KWS
101

102

103

In
te

rm
ed

ia
te

 B
uf

fe
r (

B)

FC BNN Conv. BNN TM TM

Figure 11: Size of the intermediate buffers of the 𝜇TMand𝛼TMmod-
els compared to the baselines BNNs (Log scale on y-axis).

We first notice the effectiveness of both encoding methods com-

pared to vanilla TM, which is too large for the MCU. The 𝜇TM al-

ways offers a lower memory footprint compared to FC BNN across

all datasets. The intrinsic properties of the Conv. BNN makes it

more memory efficient but, as we will see in the next section, it per-

forms poorly in terms of inference latency; instead a strong point

of both 𝜇TM and 𝛼TM. Notice that the memory footprint for 𝛼TM

is higher for both MNIST and KWS but almost the same as 𝜇TM

for CIFAR. This highlights the fundamental differences in the two

encoding approaches; 𝜇TM exploits the long-running patterns in

the TA states while 𝛼TM works best with high TA include sparsity.

In the case of CIFAR we have the best of both conditions, there are

long runs of 0s interlaced with occasional 1s (includes), as such,

both methods benefit and offer very similar compression.

Focusing on Table 1, which shows the number of TA states in

each TM for the three datasets, we notice that even if the TA states

were stored with 1-bit representation (an obvious solution) the

sizes would be 383KB, 500KB, 232KB for MNIST, CIFAR, and KWS,

respectively. However, our encoding approaches drastically reduce

this, for the 𝜇TM, the same models can be represented in 66.6KB,

45KB, and 49.2KB, respectively.

Intermediate Buffers: These buffers either contain the results of

computations that are not fully completed or, for BNNs, keep a copy

of the output of one layer that is to be passed to the next layer as

input, in case a power failure occurs. Through Figure 11 we make

the case for TMs being good candidates for intermittently-powered

systems where large intermediate buffers result in overhead during

frequent reboots. For the 𝛼TM, the buffer contains only individual

class sums. Whereas, 𝜇TM requires some other encoding informa-

tion to be stored as well. The buffer size for 𝛼TM is significantly

smaller compared to the intermediate results of the BNNs across

all three datasets with only 10 bytes. The 𝜇TM has a similar but

lower size to FC BNNs for all three datasets, e.g. 278 bytes for 𝜇TM

on CIFAR2 compared to 404 bytes for FC BNN (using the configu-

rations in Table 1). While the Conv. BNN offers the best memory

footprint in terms of overall memory usage, we now see this comes

Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines SenSys ’22, November 6–9, 2022, Boston, MA, USA

Dataset
Model Size (KB) Latency (ms) Energy (mJ)

RLE-TM 𝛼TM 𝜇TM RLE-TM 𝛼TM 𝜇TM RLE-TM 𝛼TM 𝜇TM
MNIST 111 114 65 4450 168 3310 33.13 1.22 24.99

CIFAR 49 53 44 4448 81 3800 32.75 0.59 28.88

KWS 81 87 48 2650 167 2134 19.45 0.97 10.7

Table 3: 𝛼TM and 𝜇TM are compared with simple run-length-
encoded TMmodels (RLE-TM) [2]. Comparisons aremade using the
TM models listed in Table 1.

with a trade-off in intermediate buffer size because the results of

the convolution operations must be stored in this buffer.

This is where the 𝛼TM demonstrates its clear advantage through

the simplicity of the clause operation combined with the shortcut

shown in Figure 5 where we show that only the include TA states

need to be encoded and evaluated. The focus on evaluating only

the include decisions for the clause output means that there are

significantly fewer computations required for evaluating the clause

output compared to 𝜇TM, resulting in simpler encoding and thus

smaller intermediate results.

8.3 Constant Power Evaluation
In this section, we evaluate the performance of the techniques

offered by Lite-TM when the TM models are deployed on a

continuously-powered device.

Accuracy, Latency and Energy: Figure 12 compares the 𝛼TM

and 𝜇TM with fully connected and convolutional BNN equivalents

for the three datasets. We use the same 10 models as before, trained

with different number of clauses to study how the performance

metrics change in accordance with this hyperparameter.

We first notice that the vanilla TM, 𝜇TM, and 𝛼TM models have

the same accuracy since our encoding techniques are lossless and

the entire model can be reconstructed exactly at run-time. With a

sufficient number of clauses, the TM models reach a very similar

accuracy compared to the baselines BNNs or slightly higher for the

KWS dataset. In particular, the TM accuracy is within 2% of the

BNNs on MNIST, is 4% higher than FC and within 1% of Conv. on

the CIFAR dataset, and 14% higher than Conv. on the KWS dataset

while being within 1% of the FC accuracy.

When considering latency and energy per inference, the vanilla

TM models cannot be deployed on the MSP430 due to the excessive

size of the models. Instead, the energy efficiency of the 𝛼TMmodels

is highlighted in Figure 12; across all three datasets, the 𝛼TM has

the lowest latency and therefore energy expenditure compared

to both BNNs and 𝜇TM models. 𝜇TM models have latency that is

significantly better than Conv. BNNs and in the same range as FC

BNNs, however, as we have seen in the previous section, offer an

interesting tradeoff in terms of memory usage. The most significant

finding from this figure is that the encoded TMs can provide equal

or better accuracy to BNNs for a much lower energy cost.

We also compare the latency and energy of 𝛼TM and 𝜇TM with

simple run-length-encoded TM models [2]. From Table 3, we notice

that both 𝛼TM and 𝜇TM are more energy efficient than RLE TMs. In

case of MNIST, RLE takes 1.34x more energy than 𝜇TM. Similarly,

in case of CIFAR, RLE takes 55x more energy than 𝛼TM. These

improvements show the benefit of our novel encoding schemes.

40 80 120 160 200
60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MNIST

FC BNN
Conv. BNN
Vanilla TM

 TM
 TM

200 400 600 800 1000
70

75

80

85

90
CIFAR

120 240 360 480 600
50

60

70

80

90
Keyword Spotting

10
12

40 80 120 160 200
0.01

0.2

3

La
te

nc
y

(s
) 14

16

200 400 600 800 1000
0.01

0.2

3

31
33

120 240 360 480 600
0.01

0.2

3

60
70

40 80 120 160 200
0.1

1

10

Clauses

En
er

gy
 (m

J) 80
90

200 400 600 800 1000
0.1

1

10

Clauses

190
200

120 240 360 480 600
0.1

1

10

Clauses

Figure 12: Accuracy, latency, and energy of TM models when com-
pared to baselines BNNs. Vanilla TM exceeded the limited memory
of MSP430 for the number of clauses used in the evaluation. (Note
broken y-axes in latency/energy plots. Also, note the log scale on
y-axes in the lower part of latency/energy plots).

20 60 100 140 180
40

55

70

85

100

Ac
cu

ra
cy

 (%
)

MNIST

FC BNN
Conv. BNN
N-Adpt TM
N-Adpt TM
Adpt TM
Adpt TM

100 300 500 700 900
70

75

80

85

90
CIFAR

60 180 300 420 540
70

75

80

85

90
Keyword Spotting

10
12

20 60 100 140 180
0.01

0.2

3

La
te

nc
y

(s
) 14

16

100 300 500 700 900
0.01

0.2

3

31
33

60 180 300 420 540
0.01

0.2

3

60
70

20 60 100 140 180
0.1

1

10

Dropped Clauses

En
er

gy
 (m

J) 80
90

100 300 500 700 900
0.1

1

10

Dropped Clauses

190
200

60 180 300 420 540
0.1

1

10

Dropped Clauses

Figure 13: Accuracy, latency, and energy of the encoded TM mod-
els when the clause dropping adaptation is applied. (Note broken
y-axes in latency/energy plots. Also, note the log scale on y-axes in
the lower part of latency/energy plots).

Adaptive Inference: To study the performance of our adaptation

technique, we use the TMmodels which achieved the best accuracy,

as reported in Table 1. We then iteratively drop 10% of the clauses

until we reach 90% of dropped clauses. This allows us to study

the behaviour of the models at different levels of dropped clauses.

Figure 13 shows the results in terms of accuracy, latency, and energy

per inference. The robustness of the ranked clauses is made clear

through the relatively slow accuracy degradation across the three

datasets. It is only when nearly half the total number of clauses are

dropped that the accuracy starts to reduce more significantly. This

leaves a large window of clause-dropping options for the scheduler

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

when the power is not constant. We also note that for MNIST

the performance drop is a lot more extreme compared to CIFAR

and KWS. This suggests that the clause weights for MNIST are

quite similar and therefore the loss of these clauses has a greater

impact. However, for CIFAR and Keyword Spotting there are fewer

impactful clauses (the weightings are more extreme), therefore the

accuracy degradation is not as harsh.

In terms of latency and energy, Figure 13 shows dropping clauses

results in a smooth and linear reduction in inference latency and,

consequently, energy. This enables great flexibility at run-time in

selecting the appropriate number of clauses to drop to cope with

variable energy provided by the harvesters.

8.4 Intermittent Power Evaluation
We use solar and radio energy harvesters to evaluate the perfor-

mance of Lite-TM under intermittent and variable power scenarios.

Energy Traces. In order to have reproducible evaluation under

intermittent power we recorded energy traces using different har-

vesters and then used those traces with different conditions (e.g.,

TMmodels, encoding, adaptive/non-adaptive configuration) to thor-

oughly evaluate Lite-TM.We use two kinds of energy harvesters for

our evaluation; a radio-frequency harvester (Powercast TX91501B,

915 MHz, 3W transmitter) combined with the Powercast P2110B

controller and a solar energy management chip (TI BQ25570) paired

with a solar cell. The hardware setup is shown in Figure 7.

To record these energy traces, we placed the harvesters in an

indoor office space; the RF transmitter and receiver were positioned

at a distance of 2m from one another in a breakout area where

people often dwell, and the solar harvester was placed on a desk

close to a window such that people could shade the solar panel

when passing by or stopping next to the desk. We attached to each

harvester an MSP430 running our Lite-TM framework to act as load

and recorded the time intervals when the MSP430 was on, powered

by the harvester, and when it was off, during the recharge of the

capacitor. We used a 6.8mF supercapacitor for the solar harvester

and a 50mF supercapacitor for the RF harvester and recorded 4-

minute long traces for both configurations. We ensured that for

each trace there were people in-between the RF transmitter and

receiver or they were shading the solar panel to obtain traces with

variable harvested energy.

The recorded traces are then loaded on a separate MCU (a Teensy

3.6), acting as an energy emulator, which controls the input sup-

ply to the MSP430FR5994, with the actual Lite-TM benchmarks

running, accordingly to the on and off intervals. The use of pre-

recorded traces allows repeatability in our intermittence evaluation.

Ekho [8] can also be used for recording and repeatably emulating

power traces, but it is more useful in scenarios where the load

is continuously changing, i.e., when an external sensor or radio

module is turned on/off. In our case, however, the load is only the

MCU which is always on whenever energy is available. Therefore

both methods would have resulted in the same recorded and emu-

lated trace. We opted for the former approach since it is simpler to

implement and easier to reproduce. A similar setup has been used

for evaluating other intermittently-powered systems [38, 53]. The

characteristics of the traces we recorded and emulated are listed in

Harvester
On Time (ms) Off Times (ms) Power

Max Min Avg Max Min Avg Outages
RF 2473 147 1872 51947 890 10626 20

Solar 76055 1308 6093 19302 1669 5727 33

Table 4:Maximum,minimumand average on/off times, andnumber
of power outages recorded using RF and solar energy harvesters.

RF Solar
1

10

102

103

104

In
fe

re
nc

es

MNIST

FC BNN Conv. BNN N-Adpt TM N-Adpt TM Adpt TM Adpt TM

+6
0%

-2
%

+8
7%

-2
%

+7
1%

-2
% +6

7%
-2

%

RF Solar
1

10

102

103

104

CIFAR

+1
20

%
-2

%
+6

3%
-2

%

+7
5%

-2
%

+6
1%

-2
%

RF Solar
1

10

102

103

104

KWS

+5
9%

-1
% +6

5%
-1

%

+6
2%

-1
% +6

3%
-1

%

Figure 14: The number of inferences completed under intermittent
power with RF and solar harvesters. The blue and red numbers in-
dicate the increase in the number of inferences and the decrease in
accuracy, respectively, of the adaptive TM models against the non-
adaptive TM models. Log scale on the y-axis.

Table 4. In order to keep testing conditions consistent, both adap-

tive and non-adaptive runs of 𝜇TM and 𝛼TM are powered using

the same RF and solar energy traces. It is also important to note

that, for all adaptive runs, the on/off periods of RF and solar traces

are not affected in any way. It is only the amount of compute that

changes at run-time.

Baselines and Metrics. As baselines, we use the same BNNs

adopted throughout our evaluation and non-adaptive versions of

the TM models encoded with 𝜇TM and 𝛼TM (Table 1). All baselines

have a fixed latency and cannot adapt their computation at runtime.

For the evaluation metrics, we use the total number of inferences

computed and the estimated accuracy obtained by the models. Since

it is impossible to acquire reliable ground truth while running

the system intermittently, the models’ accuracy is estimated by

considering their performance on the test set. For the static models,

this corresponds directly to the test set accuracy. For the adaptive

models, we compute a weighted average accuracy based on the

number of inferences performed for each configuration (i.e., number

of clauses used for an inference) and their accuracy on the test set.

Results. Figure 14 reports the number of inferences completed by

static and adaptive models. We notice how the adaptive 𝛼TM mod-

els achieve the highest number of inferences, across all datasets and

for both energy traces, thanks to their low inference latency and to

the adaptation at runtime. Analysing the results more carefully, we

observe that adaptive 𝛼TM models complete between 61% and 87%

more inferences compared to non-adaptive 𝛼TMmodels (blue anno-

tations in Figure 14) with a drop in accuracy between 1% and 2% (red

annotations). A similar increase in inference throughput, with 120%

more inferences at max, and a drop in accuracy is also shown for

adaptive 𝜇TM models compared with the respective non-adaptive

versions. This demonstrates that regardless of which encoding is

used (𝜇TM for memory footprint or 𝛼TM for latency) our adapta-

tion increases inference throughput with minimal accuracy drop

when running intermittently.

Table 5 shows the latency and energy expenditure per inference

for our approaches with and without adaptation compared with

BNNs. Through these experiments, we make a strong case for using

Adaptive Intelligence for Batteryless Sensors Using Software-Accelerated Tsetlin Machines SenSys ’22, November 6–9, 2022, Boston, MA, USA

Dataset Energy Trace
Latency (s) / Energy (mJ)

FC. BNN Conv. BNN Non-Adpt. 𝜇 TM Non-Adpt. 𝛼 TM Adpt. 𝜇 TM Adpt. 𝛼 TM

RF 6.00 / 8.73 120.0 / 174.6 24.00 / 34.92 1.17 / 1.70 15.0 / 21.83 0.62 / 0.90

MNIST
Solar 2.79 / 8.12 48.00 / 139.7 11.43 / 33.26 0.54 / 1.58 6.67 / 19.40 0.33 / 0.95

CIFAR
RF 7.50 / 10.9 120.0 / 174.6 48.00 / 69.84 0.57 / 0.83 21.8 / 31.75 0.35 / 0.51

Solar 3.48 / 10.1 60.00 / 174.6 15.00 / 43.65 0.27 / 0.78 8.57 / 24.94 0.17 / 0.48

RF 5.00 / 7.28 ✖ / ✖ 10.91 / 15.87 0.93 / 1.35 6.86 / 9.98 0.56 / 0.82

KWS
Solar 2.31 / 3.36 ✖ / ✖ 5.00 / 14.55 0.43 / 1.27 3.08 / 8.95 0.27 / 0.78

Table 5: Latency and energy per inference for BNNs and non-adaptive TMs compared with adaptive TMs on different energy traces.

𝛼TM for intermittently powered systems. Once again we see that

even without adaptation the 𝛼TM provides better latency and en-

ergy efficiency compared to BNNs and this is further improved with

the run-time adaptation. The experiments highlight the computa-

tional intensity of the Conv. BNN: the on-time is not sufficient to

complete any inferences for KWS. The 𝜇TM offers a middle ground

between FC BNN and Conv. BNN and for a relative sacrifice in

energy frugality we have the potential to scale to larger problems.

9 DISCUSSION

On Flexibility:Aside from the first automated transition of Tsetlin

Machines from software to optimised MCU implementations com-

plete with runtime adaptation, the main advantage of Lite-TM is the

flexibility to different applications. The user has the design knobs

to determine whether memory is more of a priority than latency

and if runtime adaption is necessary or not. As classification tasks

become more complex and the number of features increases, so will

the memory footprint of the models. To achieve good performance

for these applications more clauses will be required to derive the

necessary propositions. In cases like this, the 𝜇TM is better suited.

For applications where real-time response is important the 𝛼TM

is preferred since it is better suited to smaller problems where the

memory footprint will be small but low inference latency is para-

mount. A substantial advantage of Lite-TM is that the accuracy of

the models is preserved since both encoding methods are lossless.

Similarly, adapting the runtime complexity of the model might

be preferable in applications where energy is not constant, as con-

sidered in this paper. However, the flexibility of Lite-TM allows

to easily adopt the same approach in other settings. For exam-

ple, to reduce the inference latency when a battery is draining (in

a battery-powered device) or when the user is demanding high

resource utilisation from other applications (i.e., gaming) and infer-

ence complexity needs to be scaled down.

On Scalability: The purpose of this work is to explore an emerging

machine learning algorithm and optimise its inference efficiency

for intermittently-powered devices. The choice of recognition tasks

reflected this target execution environment. This however, does not

allow us to make any claim on the scalability performance of TM

models to much larger and complex tasks (e.g., cloud-scale image

or acoustic recognition). For such problems, TMs are at a very

early stage compared to artificial neural networks, which enjoyed

many years of research and development. Recently, a community

is building around the understanding of the limits of TMs and their

comparison with deep learning approaches [5, 11, 27, 41, 46, 51],

however, this is beyond the scope of this paper.

The algorithmic and architectural disparity between TMs and

DNNs make fair comparisons very challenging. Nevertheless, in

this paper we compared TMs with the closed inference implemen-

tation possible (i.e., binary neural networks) and offered a balanced

look at the advantages and disadvantages of our proposed optimisa-

tions against them. As shown in Figure 12 the maximum accuracy

reached by the encoded TMs is very close to the highest accuracy

achieved by BNNs (either fully connected or convolutional) for all

the datasets we considered. This shows that, for what accuracy is

concerned, TMs do not offer a better alternative to BNNs yet. How-

ever, in terms of latency and energy consumption, our encoding

schemes (𝛼TM in particular) offer significant benefits compared

to BNNs especially when considering intermittently-powered and

embedded devices. This is thanks to the very simple architecture of

the clause computation unit (Figure 1) and the fact that TM models

do not have multi-layer structures which complicate their inference

execution. We believe our work can be easily applied to future

iterations of the TM algorithm since they operate after the model

has been trained. This could open the doors to more efficient TMs

for large and complex recognition tasks.

On Encoding and Training: Both encoding methods rely on the

imbalance of TA include decisions to exclude decisions; through

the experiments, we have shown that this can be incredibly useful

in reducing the memory size as well as reducing the inference la-

tency when the number of includes is low. Through the weighting

and ranking of clauses during training combined with the runtime

adaptation we also examined the impact of dropping less impactful

clauses from the classification. In doing so we show that some in-

cludes are more important in the classification than others. Future

work will look deeper into exploiting this to develop an “include-

aware” training procedure that can lead to even smaller memory

footprints and inference latency and open opportunities for explor-

ing larger classification problems.

10 CONCLUSION
In this paper, we have explored the practical possibilities of Tsetlin

Machines in adaptive batteryless systems and experimentally

shown their advantages compared to binarized neural networks

in terms of energy efficiency. We developed Lite-TM, a framework

for automating the deployment of Tsetlin Machines on resource-

constrained microcontrollers through encoding techniques that

offer the user the trade-off between memory footprint and energy

efficiency, as well as runtime adaptability. Lite-TM has been evalu-

ated with vision and acoustic workloads demonstrating the efficacy

of our principled approaches in improving the memory, latency, and

energy efficiency of TMs while also maximising the overall system

availability. We believe this work represents a useful first step

towards the exploration of an alternative classification algorithm

to deep neural networks, not only in the context of batteryless

systems but also in the larger area of embedded machine learning.

SenSys ’22, November 6–9, 2022, Boston, MA, USA Bakar and Rahman et al.

REFERENCES
[1] Antonini, M., Vu, T. H., Min, C., Montanari, A., Mathur, A., and Kawsar,

F. Resource characterisation of personal-scale sensing models on edge accelera-

tors. In Proceedings of the First International Workshop on Challenges in Artificial
Intelligence and Machine Learning for Internet of Things (2019), AIChallengeIoT’19.

[2] Bakar, A., Rahman, T., Montanari, A., Lei, J., Shafik, R., and Kawsar, F.

Logic-based intelligence for batteryless sensors. In Proceedings of the 23rd Annual
International Workshop on Mobile Computing Systems and Applications (2022),
pp. 22–28.

[3] Bakar, A., Ross, A. G., Yildirim, K. S., and Hester, J. REHASH: A Flexible,

Developer Focused, Heuristic Adaptation Platform for Intermittently Powered

Computing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies 5, 3 (2021), 1–42.

[4] Balsamo, D., Weddell, A. S., Merrett, G. V., Al-Hashimi, B. M., Brunelli, D.,

and Benini, L. Hibernus: Sustaining computation during intermittent supply

for energy-harvesting systems. IEEE Embedded Systems Letters 7, 1 (2014), 15–18.
[5] Berge, G. T., Granmo, O.-C., Tveit, T. O., Goodwin, M., Jiao, L., and

Matheussen, B. V. Using the tsetlin machine to learn human-interpretable

rules for high-accuracy text categorization with medical applications, 2018.

[6] Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-for-all: Train one

network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791
(2019).

[7] de Winkel, J., Delle Donne, C., Yildirim, K. S., Pawełczak, P., and Hester, J.

Reliable timekeeping for intermittent computing. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (2020), pp. 53–67.

[8] et al., H. Ekho: Realistic and repeatable experimentation for tiny energy-

harvesting sensors. In Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems (2014), pp. 330–331.

[9] Fang, B., Zeng, X., and Zhang, M. Nestdnn: Resource-aware multi-tenant on-

device deep learning for continuous mobile vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking (2018),

pp. 115–127.

[10] Geissdoerfer, K., Jurdak, R., Kusy, B., and Zimmerling, M. Getting more out

of energy-harvesting systems: Energy management under time-varying utility

with preact. In Proceedings of the 18th International Conference on Information
Processing in Sensor Networks (2019), pp. 109–120.

[11] Glimsdal, S., and Granmo, O.-C. Coalesced multi-output tsetlin machines with

clause sharing, 2021.

[12] Gobieski, G., Lucia, B., and Beckmann, N. Intelligence beyond the edge: In-

ference on intermittent embedded systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (2019), pp. 199–213.

[13] Granmo, O.-C. The tsetlin machine–a game theoretic bandit driven ap-

proach to optimal pattern recognition with propositional logic. arXiv preprint
arXiv:1804.01508 (2018).

[14] Granmo, O.-C., Glimsdal, S., Jiao, L., Goodwin, M., Omlin, C. W., and Berge,

G. T. The convolutional tsetlin machine, 2019.

[15] Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015).

[16] Hester, J., and Sorber, J. The future of sensing is batteryless, intermittent,

and awesome. In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems (2017).

[17] Hester, J., Storer, K., and Sorber, J. Timely execution on intermittently

powered batteryless sensors. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems (2017), pp. 1–13.

[18] Hester, J., Tobias, N., Rahmati, A., Sitanayah, L., Holcomb, D., Fu, K.,

Burleson, W. P., and Sorber, J. Persistent clocks for batteryless sensing devices.

ACM Transactions on Embedded Computing Systems (TECS) 15, 4 (2016), 1–28.
[19] Instruments, T. MSP430FRxx FRAM Microcontrollers. http:

//www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/

msp430frxx_fram/overview.page. Accessed: 10-21-2021.

[20] Islam, B., Luo, Y., and Nirjon, S. Zygarde: Time-sensitive on-device deep

intelligence on intermittently-powered systems.

[21] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and

Kalenichenko, D. Quantization and training of neural networks for efficient

integer-arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2018).

[22] Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. Compression of

deep convolutional neural networks for fast and low power mobile applications.

arXiv preprint arXiv:1511.06530 (2015).
[23] Krizhevsky, A. Learning multiple layers of features from tiny images.

[24] LeCun, Y. The mnist database of handwritten digits.

http://yann.lecun.com/exdb/mnist/, 1998. Accessed: 10-21-2021.

[25] Lee, S., and Nirjon, S. Neuro. zero: a zero-energy neural network accelerator for

embedded sensing and inference systems. In Proceedings of the 17th Conference
on Embedded Networked Sensor Systems (2019), pp. 138–152.

[26] Lei, J., Rahman, T., Shafik, R., Wheeldon, A., Yakovlev, A., Granmo, O.-C.,

Kawsar, F., and Mathur, A. Low-power audio keyword spotting using tsetlin

machines. Journal of Low Power Electronics and Applications 11, 2 (2021), 18.
[27] Lei, J., Wheeldon, A., Shafik, R., Yakovlev, A., and Granmo, O.-C. From

arithmetic to logic based ai: A comparative analysis of neural networks and

tsetlin machine. In 2020 27th IEEE International Conference on Electronics, Circuits
and Systems (ICECS) (2020), pp. 1–4.

[28] Lin, J., Chen, W.-M., Cai, H., Gan, C., and Han, S. Mcunetv2: Memory-efficient

patch-based inference for tiny deep learning. In Annual Conference on Neural
Information Processing Systems (NeurIPS) (2021).

[29] Lin, J., Chen, W.-M., Lin, Y., Gan, C., Han, S., et al. MCUNet: Tiny deep

learning on iot devices. Advances in Neural Information Processing Systems 33
(2020), 11711–11722.

[30] Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Rethinking the value of

network pruning. arXiv preprint arXiv:1810.05270 (2018).
[31] Lucia, B., Balaji, V., Colin, A., Maeng, K., and Ruppel, E. Intermittent comput-

ing: Challenges and opportunities. In 2nd Summit on Advances in Programming
Languages (SNAPL 2017) (2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik.

[32] Maeng, K., Colin, A., and Lucia, B. Alpaca: Intermittent execution without

checkpoints. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 1–30.

[33] Maxim Integrated. DS3231 real time clock (rtc). https://datasheets.

maximintegrated.com/en/ds/DS3231.pdf, Mar. 2008. Last accessed: Dec. 20, 2021.

[34] McDanel, B., Teerapittayanon, S., and Kung, H. Embedded binarized neural

networks. arXiv preprint arXiv:1709.02260 (2017).
[35] Min, C., Mathur, A., Montanari, A., and Kawsar, F. Sensix: A system for

best-effort inference of machine learning models in multi-device environments.

IEEE Transactions on Mobile Computing (2022).

[36] Min, C., Montanari, A., Mathur, A., and Kawsar, F. A closer look at quality-

aware runtime assessment of sensing models in multi-device environments. In

Proceedings of the 17th Conference on Embedded Networked Sensor Systems (2019).
[37] Montanari, A., Alloulah, M., and Kawsar, F. Degradable inference for en-

ergy autonomous vision applications. In Adjunct Proceedings of the 2019 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (2019),

UbiComp/ISWC ’19.

[38] Montanari, A., Sharma, M., Jenkus, D., Alloulah, M., Qendro, L., and

Kawsar, F. ePerceptive: Energy Reactive Embedded Intelligence for Batteryless

Sensors. In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems (2020), pp. 382–394.

[39] Nardello, M., Desai, H., Brunelli, D., and Lucia, B. Camaroptera: a batteryless

long-range remote visual sensing system. In Proceedings of the 7th International
Workshop on Energy Harvesting & Energy-Neutral Sensing Systems (2019), pp. 8–14.

[40] Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. Binary neural networks:

A survey. Pattern Recognition 105 (2020), 107281.
[41] Rahman, T., Shafik, R., Granmo, O.-C., and Yakovlev, A. Resilient biomedical

systems design under noise using logic-based machine learning. Frontiers in
Control Engineering 2 (2022).

[42] Ransford, B., Sorber, J., and Fu, K. Mementos: System support for long-running

computation on rfid-scale devices. In Proceedings of the sixteenth international
conference on Architectural support for programming languages and operating
systems (2011), pp. 159–170.

[43] Robinson, A. H., and Cherry, C. Results of a prototype television bandwidth

compression scheme. Proceedings of the IEEE 55, 3 (1967), 356–364.
[44] Rosenblatt, F. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review 65, 6 (1958), 386.
[45] Saha, R., Granmo, O.-C., and Goodwin, M. Using tsetlin machine to discover

interpretable rules in natural language processing applications. Expert Systems
n/a, n/a, e12873.

[46] Sharma, J., Yadav, R., Granmo, O.-C., and Jiao, L. Drop clause: Enhancing

performance, interpretability and robustness of the tsetlin machine.

[47] Simons, T., and Lee, D.-J. A review of binarized neural networks. Electronics 8, 6
(2019), 661.

[48] Sparks, P. The route to a trillion devices. White Paper, ARM, 2017.

[49] Warden, P. Speech commands: A dataset for limited-vocabulary speech recogni-

tion. arXiv preprint arXiv:1804.03209 (2018).
[50] Wheeldon, A., Shafik, R., Rahman, T., Lei, J., Yakovlev, A., and Granmo, O.-C.

Learning automata based energy-efficient ai hardware design for iot applications.

Philosophical Transactions of the Royal Society A 378, 2182 (2020), 20190593.
[51] Yadav, R. K., Jiao, L., Granmo, O.-C., and Olsen, M. G. Interpretability in word

sense disambiguation using tsetlin machine. In ICAART (2021).

[52] Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V.,

and Adam, H. Netadapt: Platform-aware neural network adaptation for mobile

applications. In Proceedings of the European Conference on Computer Vision (ECCV)
(2018), pp. 285–300.

[53] Yildirim, K. S., Majid, A. Y., Patoukas, D., Schaper, K., Pawelczak, P., and

Hester, J. Ink: Reactive kernel for tiny batteryless sensors. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor Systems (2018), pp. 41–53.

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Intermittent Computing
	2.2 Efficient and Adaptive Machine Learning
	2.3 Tsetlin Machines Primer
	2.4 Benefits and Challenges of Intermittently-Powered Tsetlin Machines

	3 Lite-TM Overview
	3.1 Training
	3.2 Encoding
	3.3 Inference

	4 Memory-Compact TM: TM
	5 Accelerated TM: TM
	6 Power-Aware Adaptive TM
	7 Lite-TM Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Memory Usage
	8.3 Constant Power Evaluation
	8.4 Intermittent Power Evaluation

	9 Discussion
	10 Conclusion
	References

