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ABSTRACT
The increasing availability of multiple sensory devices on or near
a human body has opened brand new opportunities to leverage
redundant sensory signals for powerful sensing applications. For
instance, personal-scale sensory inferences with motion and audio
signals can be done individually on a smartphone, a smartwatch,
and even an earbud - each offering unique sensor quality, model
accuracy, and runtime behaviour. At execution time, however, it is
incredibly challenging to assess these characteristics to select the
best device for accurate and resource-efficient inferences. To this
end, we look at a quality-aware collaborative sensing system that
actively interplays across multiple devices and respective sensing
models. It dynamically selects the best device as a function of model
accuracy at any given context. We propose two complementary
techniques for the runtime quality assessment. Borrowing princi-
ples from active learning, our first technique runs on three heuristic-
based quality assessment functions that employ confidence, margin
sampling, and entropy of models’ output. Our second technique is
built with a siamese neural network and acts on the premise that
runtime sensing quality can be learned from historical data. Our
evaluation across multiple motion and audio datasets shows that
our techniques provide 12% increase in overall accuracy through
dynamic device selection at the average expense of 13 mW power
on each device as compared to traditional single-device approaches.

CCS CONCEPTS
•Computer systems organization→Embedded systems;Em-
bedded software.

KEYWORDS
quality assessment, sensing models, multi-device environments

ACM Reference Format:
Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar.
2019. A Closer Look at Quality-Aware Runtime Assessment of Sensing
Models in Multi-Device Environments. In The 17th ACM Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’19, November 10–13, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00
https://doi.org/10.1145/3356250.3360043

Embedded Networked Sensor Systems (SenSys ’19), November 10–13, 2019,
New York, NY, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3356250.3360043

1 INTRODUCTION
For long, mobile sensing research has focused on creating accurate,
robust and multi-modal sensory models for a single device making
it intelligent at understanding us and the world around us [13, 17, 20,
28]. However, with an unprecedented rise of on/near-body devices
- smartphones, wearables, or IoT devices - it is common today to
find ourselves surrounded by multiple sensory devices. Studies
(e.g., [31]) even estimate that by the year 2025, each person will
have 9.3 connected devices. Therefore, we believe that efficient and
accurate sensing in a multi-device environment is a key research
area for the mobile sensing community.

Such multi-device dynamics offer exciting opportunities to lever-
age redundant sensory signals to develop accurate and robust sens-
ing models quantifying richer human contexts continuously and
at scale. This is mainly enabled by the fact that most of these de-
vices share a common set of core sensors such as accelerometer,
gyroscope, and microphone. For example, activity tracking can be
done individually on a smartphone, a smartwatch, and even an
earbud. Similarly, audio sensing can be done by selectively using a
microphone on one of these devices or nearby IoT devices. In both
cases, different devices offer varying sensor quality, model accuracy,
runtime behaviour, and usage dynamics. Moreover, these charac-
teristics change over time due to several factors including device
variability, e.g., hardware and software heterogeneity [15, 34], com-
pute and energy budget, etc. and temporal variability, e.g., device
placement [19], a user’s surrounding situation, etc.

These facets uncover critical system challenges to assess and
compare the characteristics of different devices and to select the
best device for accurate and resource-efficient sensory inferences at
any given context. Naturally, research on quality1-aware sensing in
a multi-device setting has been recently intensified. Several works
in body sensor network have looked at sensor selection, but mostly
taking a static view on average accuracy with resource aware-
ness [6, 7, 10, 45]. Multi-sensory fusion has also been studied exten-
sively to improve model accuracy while addressing system issues,
such as time synchronisation and missing data [23, 25, 37, 41, 42].
These works contributed substantially to advance our understand-
ing of multi-device sensing research. We build on this rich body of

1In this paper, we define quality as expected recognition accuracy of a sensing model
for a given inference task at any point of time.

271

https://doi.org/10.1145/3356250.3360043
https://doi.org/10.1145/3356250.3360043
https://doi.org/10.1145/3356250.3360043


SenSys ’19, November 10–13, 2019, New York, NY, USA Min et al.

Fig. 1: An overview of the collaborative sensing system. We periodi-
cally assess the runtime sensing quality and choose the best device.

literature and investigate a specific challenge that lacked adequate
attention from past research, namely:

"Given that inference accuracy of sensing models varies across
devices and over time in multi-device environments, can we select a
device – at runtime –, which is likely to provide the best inference
accuracy in that instance?" If such a dynamic runtime selection
system is developed, we can expect to have two benefits: (a) it will
provide higher inference accuracy for a task than using a single
device, (b) it will eliminate the redundant inference computations
from multiple devices, e.g., fusion, thereby providing energy gains.

To this end, for the first time, we explore two complementary
techniques for runtime assessment of sensing models and present
a quality-aware collaborative sensing system. The system actively
interplays between multiple devices and respective sensing mod-
els to dynamically select the best device for the recognition task
at hand. Our first technique, heuristic-based quality assessment
(HQA), borrows principles of certainties from active learning litera-
ture. We devise three functions operating on calibrated probabilities
of models’ output in deriving the quality of the recognition perfor-
mance at runtime and selecting the device accordingly. Our second
technique, learning-based quality assessment (LQA), is built on the
premise that runtime sensing quality can be learned to predict the
best device and corresponding inference path. We devise LQA by
training a Siamese neural network [16]. Grounded on these tech-
niques, we introduce a collaborative and quality-aware execution
planner for model execution, as illustrated in Figure 1.

We evaluate these techniques with two motion and two audio
datasets using three sensing tasks – physical activity, emotion, and
keyword recognition. The results show that our techniques boost
the overall recognition accuracy by 12% on average compared to
single-device baselines. Energy expense of this accuracy gain is
slightly higher, but less than 13 mW on average on each device. In
comparison to voting and fusion baselines which require all the
devices to be used continuously, our techniques show comparable
accuracy, but considerably lower energy overhead – almost in-
versely proportional to the number of devices. We further provide
an in-depth analysis to uncover the pros and cons of our meth-
ods. Finally, we present a well-being monitoring application with a
smartphone, a smartwatch and a smart earbud to show the practical
manifestation of our techniques in multi-device environments.

We first position our work against past research. Then, we take a
data-driven view on the challenges of multi-device sensing systems.
Next, we present the technical building blocks of this work, followed
by systematic evaluation. Before concluding the paper, we reflect
on the limitations and future avenue of this work.

2 RELATEDWORK
We review past research on multi-device environments (MDE),
focusing on sensor selection, sensor fusion, and system support.

2.1 Sensor Selection in MDEs
In body sensor networks (BSN), several sensing strategies have been
proposed to recognise human contexts leveraging various on-body
sensors. They have been studied to understand the effect of different
characteristics on recognition accuracy, e.g., types, compositions,
and placements of sensors. Grounded on these findings, several
context-aware middlewares have been developed for dynamic BSN
environments [6, 7, 10, 14, 45]. Their typical approach has been to
dynamically select the best sensor based on predefined parameters,
such as average accuracy, resource usage, and availability.

Although these works provided a foundation for designing exe-
cution strategies in dynamic BSN environments, their consideration
of sensing quality has been limited. For instance, the selection is
mostly made based on the average accuracy acquired during a train-
ing phase, which assumes that the sensing quality, i.e., expected
accuracy, would be same as long as the associated sensors are avail-
able. However, we argue (and offer data-driven evidence in the next
section) that quality of sensing models is different across devices
and, more importantly, changes over time due to several runtime
factors. This insight demands a revisit of these strategies because
the best performing device dynamically changes even though the
availability of sensor devices does not change. To the best of our
knowledge, our work is the first to explore runtime assessment of
sensing models in terms of the sensing accuracy in MDEs.

2.2 Sensor Fusion in MDEs
Deep learning-based fusion techniques [23, 25, 37, 41, 42] have
been proposed to concatenate multiple sensor streams effectively
– at an early or late stage – to achieve higher accuracy. Fusing
sensory streams from different devices uncover a number of system
issues, e.g., time synchronisation, missing data, different sampling
rates. As such, several techniques have been studied to make fusion
more robust to these factors. For instance, Yao et al. proposed a
quality-aware deep learning framework that dynamically changes
the contributions of sensor inputs by their sensing quality [42].

Although these works improve model accuracy, they often suffer
from strong assumptions, e.g., all devices should be available and
active for sensing, processing, and transmissions. Besides such
practical infeasibility, these approaches also demand significant
system resources, especially energy. Our work departs from these
approaches and shows that, with carefully designed runtime quality
assessment techniques, we can achieve comparable accuracy to the
sensor fusion, however at a drastically smaller energy expense -
almost inversely proportional to the number of devices.

2.3 System Support for Sensing in MDEs
Offering adequate system support for building efficient and accu-
rate sensory applications in MDEs has also gained tremendous
attention. Kang et al. proposed a novel system built on a transla-
tion function that transforms the high-level context queries into
low-level sensor selection strategies, thereby hiding the details of
complex resource management from applications [6, 7]. Kolamunna
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et al. presented a framework for application function virtualisation
of multi-wearable sensory systems isolating various system-level
operations from application development [11]. Fortino et al. pro-
posed a framework for multi-sensor data fusion supported by an
underlying execution engine that offers several useful system-level
capabilities, such as inter-BSN communication, proximity detection,
and service discovery to simplify application development [3]. Our
work contributes to this body of research by offering system-level
components, i.e., an execution planner aided by runtime quality
assessment, to accelerate sensory system development in MDEs.

3 RUNTIME SENSING QUALITY DYNAMICS
Multi-device environments offer exciting opportunities for personal-
scale sensing applications in various aspects. It is evident thatmore
sensing tasks are possible as different devices have different charac-
teristics. For instance, by virtue of different placements, recognising
hand gestures from a smartwatch or head gestures from an earbud
is a possibility today - which was almost impossible when personal
sensory devices were limited to smartphones. Moreover, the mul-
tiplicity also means redundant capabilities, i.e., different devices
can perform the same sensing task. Consider, one of the most dom-
inant human sensing tasks - tracking physical activity. Today, this
can be performed with an inertial measurement unit (IMU) on a
smartphone [30], a smartwatch [2], or even an earbud [18]. Simi-
larly, sound events or human speech can be recognised by using
a microphone on one of these devices or nearby IoT devices (e.g.,
conversational agents and smart cars) at any given context. This
redundancy means, with carefully orchestrated scheduling, sensing
tasks can be supported longer by selectively using different devices
at different times. Finally, since each device offers different runtime
characteristics and sensing performances, we can achieve better
recognition accuracy if the best device could be selected for the
task at hand at every inference instance. In this work, we strive to
address this better sensing challenge while optimising system cost.
In what follows, we offer data-driven evidence that runtime recog-
nition quality of sensing devices greatly varies across devices and
over time, making it incredibly challenging to provide the promised
improved sensing experience in multi-device environments.

3.1 Sensing Quality and Runtime Variability
For better sensing, it is essential to properly assess and compare
sensing quality of available devices. Sensing quality has relation to
several different, but relevant metrics such as inference accuracy,
energy cost, and processing latency and can be defined as a com-
bination of those metrics. In this work, we focus on the expected
inference accuracy as a quality metric for two reasons. First, in-
ference accuracy is the primary objective of sensing applications.
Second, there are a number of tools to measure resource-related
quality metrics at runtime, e.g., [24] for energy and [4] for latency,
but runtime accuracy is not studied well yet, and its consideration
as a system component still remains at an early stage.

A key challenge for runtime assessment of sensing quality is
that it is almost infeasible to come up with a universal definition of
the quality. There are several factors, spanning over hardware, soft-
ware, system resources, and even users’ behavioural characteristics
that constitute and affect the sensing quality. More importantly,
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Fig. 2: Variations in inference accuracy over time and across devices.

their impact on quality is different across devices and changes dy-
namically over time. In this work, we focus our attention on this
specific characteristic and study two critical contributors to this
runtime variability as described below:
• Device Variability: Different devices have different sensing
quality due to their heterogeneity [15, 34]. While the placement
is a dominant factor, there are several other ones as well, e.g.,
sensor type and sampling rate. Processing and battery capacity
can also be factors as they decide OS behaviour to sensory tasks.

• Time variability: Another important aspect, but not investi-
gated actively yet in the research domain, is the temporal na-
ture of sensing performance. That is, some factors affect sensing
quality dynamically, thereby making the sensing quality unpre-
dictable. For example, the activity recognition accuracy of the
smartwatch could suddenly drop while users are typing with a
keyboard in the office or pushing a stroller outside. The accu-
racy of audio sensing from nearby IoT devices could also change
depending on a user’s distance from the device.

3.2 Quantifying Runtime Variability
To further crystallise our arguments of runtime variability, we
report a quantitative analysis on the impact of these variabilities on
sensing quality with two sensing tasks, tracking physical activity
and detecting keyword.

Setup: The goal of this study is to assess the degree to which
sensing models’ runtime accuracy varies across device over time.
We focus on two widely-used sensing modalities - motion and audio
for human-sensing tasks - human activity recognition (HAR) and
hot keyword detection. For HAR, we use a subset of the Opportunity
dataset [29] augmented with noise (see §5.1 for details) and a state-
of-the-art deepHARmodel [25]. For keyword detection, we collect a
small dataset containing 200 keywords from 10 classes and a widely
used keyword spotting model [40]. To understand the performance
of these models in multi-device settings, we re-purpose some of the
sources of the Opportunity dataset to different wearables based on
their positions (See Table 1 for mapping. Similarly, for audio sensing
task, we have collected the audio streams and trained models on
three different devices, Pixel 3 phone, LG Urbane 2 watch, and a
smart earbud [8]. For each sensing task, we trained and tested three
different sensing models corresponding to three devices, but with
the same architecture, e.g., the sensing model for the smartwatch
is trained and tested with the data from the smartwatch.

Results: To quantify the impact of variability on the accuracy
over time, we measure F1 score at every minute in the test dataset.
The window size for both tasks is set to 1 second. Thus, we compute
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Fig. 3: Opportunity for quality-aware device selection.

F1 score with 60 inference results every minute. Figure 2 shows
F1 score over time from a representative session, clearly suggest-
ing that F1 score varies across devices and fluctuates over time as
well. More importantly, the best performing device also changes
correspondingly. For example, Figure 2a shows that the shoe de-
vice outperforms the others from 1 to 2 minutes. Then, the best
performing device changes to the watch at 2 minutes, the phone at
6 minutes, and the watch again at 7 minutes. Keyword detection
using a microphone shows similar trend in Figure 2b.

Figure 2 implies that higher performance is achievable if we se-
lect the best device at every inference. To quantify this opportunity,
we measure and compare F1 score by assuming the ideal situation,
i.e., at every inference, we select the device of which corresponding
model provides the correct answer. Figure 3a shows the average F1
scores of three sensing models and the ideal case for the HAR task.
It suggests that, by selecting the best device, F1 score can increase
by 17% compared to the best performing single device (watch) and
by 23% compared to the average score of three devices. Figure 3b
shows a similar trend of an increase in F1 score by 8% in the ideal
case as compared to the best device (earbud). Such improvement
uncovers brand-new opportunities for quality-aware selection.

With the Opportunity dataset, we further quantify the opportu-
nity in the selection ofmultiple devices, e.g., two or three out of four
available devices. For the study, we extend the entire sensor set to
include five devices (See §5.3.2 for the selected devices) and develop
the fusion models for all possible combinations of the subset of
multiple devices. Then, while increasing the set size from 1 to 5,
we select the best set of the devices of which corresponding fusion
model gives the correct answer; in the case that the size is 1, we use
the sensing model. The results show that the one device selection
provides comparable accuracy to the selection of multiple devices.
While F1 score is 96.4% for the selection of one device, the scores
are 96.9%, 97.1%, 97.2%, and 97.3% for the selection of 2, 3, 4, and 5
devices, respectively. Considering that the multiple device selection
incurs significant high energy and additional training cost for the
fusion model, we argue that selecting one device is reasonable.

4 QUALITY-AWARE DEVICE SELECTION
Based on the insights from the motivational studies above, we
propose a collaborative sensing system that offers quality-aware
device selection as a way to improve sensing accuracy in multi-
device environments. Two concrete objectives shaped our design
decisions towards the development of this system:
• Model isolation: The system should not require any changes to
the underlying sensing models which need to be quality-assessed.

• Application isolation: The dynamic selection of devices should
be a black-box for sensing applications, i.e., without requiring
any modifications to the applications.

Governed by the design goals, we develop the collaborative sens-
ing system composed of two critical components: Quality Assessor
(§ 4.1) and Execution Planner (§ 4.2). Before detailing these compo-
nents, we stress on the two assumptions that our approach makes.
• First, we assume that, in a multi-device environment, each device
has a pre-trained task-specific sensing model deployed on it.

• Second, we assume that there is a host-device which can run
our quality-aware device selection algorithm – the host could be
a smartphone or a personal edge device, or can be dynamically
chosen from the multiple sensing devices themselves.

4.1 Runtime Quality Assessment
The primary aim of quality-based device selection is to assess and
compare the sensor data quality from each device at runtime. We
re-emphasise that in this paper, quality is tied to the accuracy of the
sensing task – i.e., given N sensor streams, the sensor stream which
provides the highest accuracy of the inference task (e.g., HAR) for
a specific time is said to have the best quality in our definition at
that time. As such, the concept of quality in our work differs from
traditional approaches such as signal-to-noise ratio (SNR), which
are used to assess the purity of a signal but are completely agnostic
of the inference task. For example, a speech audio segment with
high background noise might have low SNR, but could represent a
high-quality sample for a noise-detection inference task.

For the remainder of the section, we define the following:

• D: a set of available devices, {Di }, where Di is ith device,
• M : a set of sensing models, {Mi }, whereMi is a model for Di ,
• Xt : a set of sensor data at time t , {X i

t }, where X
i
t is a segment of

sensor data from Di at time t
Then, at time t , the quality-based device selection selects Dk at
which Q(Sit , M

i ) is the highest among D, where Q is a quality
function. We now present two methods to define Q .

4.1.1 Heuristic-basedQuality Assessment (HQA). One way to as-
sess sensing quality, i.e., defining Q, is to leverage confidence values
reported from sensing classifiers. Typical examples are probabilities
from probabilistic classifiers such as naive Bayes, probabilities from
a softmax layer in neural networks, and distance to a hyperplane
boundary in SVM. Since confidence values represent how confident
a classifier is on the inference output from a given input data, we
can interpret them as sensing quality. A probability value repre-
sents the probability of given sensor data being a member of each of
the possible classes. Therefore, we can simply compute the highest
probability outputted by a modelMi and use it as a measure of Q .

However, it is not straightforward to use confidence values as
sensing quality. While modern neural networks provide exceptional
accuracy, it is reported that their probabilities are notwell calibrated,
especially inmulti-class classification [5]. That is, for a given sample,
the relative order of probabilities among classes is accurate to select
the most probable class, but the comparison of probabilities from
different samples or different models could be inaccurate.

Several techniques have been proposed in the machine learning
literature [21, 27, 43, 44] to calibrate the outputs of the classifiers
and make them resemble the actual probability distribution of the
training data. In this paper, we used Platt scaling [27] for calibrat-
ing our models because of its ease of implementation and good
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performance with neural networks [22]. It performs the calibration
by fitting a logistic regression model on the classifier output.

As a next step to quantify sensing quality from calibrated proba-
bilities, we adopt uncertainty sampling strategies proposed in active
learning literature to measure uncertainty of instances, i.e., how
uncertain a given instance is to be labelled. Inspired by uncertainty
sampling, we propose three heuristic methods for certainty-based
quality assessment. We define calibrated probabilities of X i

t from
Mi as P it = {P it,k } where P

i
t,k is a probability value of X i

t for M
i ,

belonging to a class Ck and C is a set of classes, {Ck }.
• Highest confidence: The simplest way is to leverage the highest
confidence of each model. That is, the quality function, Q is
defined as the confidence in the most likely label of given sensor
data, i.e., Q(Sit ,M

i ) =max (P it ).
• Highest margin sampling: The shortcoming of the highest
confidence is that it disregards the remaining label distribution,
i.e., P it - {max (P it )}. To handle this, amargin sampling has been pro-
posed in [32]. It measures the certainty by taking the difference
between the probabilities of the two most likely classes. Higher
margin can be considered more confident. More specifically, Q is
defined as the difference between the highest and second highest
probability, i.e.,Q(Sit ,M

i ) =max (P it ) -max2nd (P it ), wheremax2nd
outputs the second maximum value.

• Least entropy: A more general strategy is to leverage entropy
which refers to disorder or uncertainty [33]. Its concept has been
proposed in information theory, but it is also widely used to
measure uncertainty or impurity in machine learning. Here, the
distribution of an instance with lower entropy can be considered
more confident. Q is defined as 1 / −

∑
k P

i
t,k log P

i
t,k ; we take a

reciprocal to make the least entropy to be chosen.
In active learning, it is shown that, while all three strategies

show reasonable performance compared to passive learning, the
best strategy is task-specific [12]. In our datasets in §5.1, the highest
margin sampling showed the best performance, thereby being used
as a default quality function in the paper.

4.1.2 Learning-based Quality Assessment (LQA). In contrast to
HQA, we also explore learning-based quality assessment wherein we
adopt a data-driven approach to learn the quality function Q using
deep neural networks (DNNs). We frame the problem of learning
Q as a multi-task learning (MTL) problem [46]. In MTL, multiple
learning tasks are solved simultaneously, while exploiting similari-
ties and differences across them. In our case, the individual tasks
assess the quality of each device’s sensing streamwith respect to the
learning objective. As these tasks share significant commonalities,
we can solve them simultaneously using an MTL framework.

For training a deep neural network to approximate the qual-
ity function, we seek a labelled training dataset p(X ,q). q is a k-
dimensional vector representing the quality ground truth, where
qk represents the binary quality ground truth for Dk . For example,
if there are three devices D1,D2,D3, then q = [1, 1, 0] means that
D1 and D2 are suitable for the current task, while D3 is not. If such
a labelled dataset could be obtained, we can use it to train a neural
network using supervised learning approaches.

Generating the quality ground truth:We denote the dataset for
the quality assessment from K devices as X = {X 1,X 2...XK } where

(a) (b)
Fig. 4: (a) Process to generate quality vector and (b) Overviewof qual-
ity model training.

Xk (k = 1...K) denotes the sensor dataset from Dk . Further, Xk
t

denotes the sample at time t in Xk (t = 1...N ) and γt denotes the
ground truth class for sample t . Note that as all the k sensor streams
are time-synchronised, they all share the same ground truth at any
time t . The training input Xt to the DNN is a k-tuple as follows:

Xt =< X 1
t ,X

2
t ,X

3
t · · ·X

K
t > (1)

In addition, we need a ground truth quality vector qt (|qt | = k)
which denotes the quality of each of the k sensor inputs:

qt =< q1t ,q
2
t ,q

3
t · · ·q

K
t > (2)

where qkt is a binary variable, qkt ϵ {0, 1}.
We explain our methodology of generating the quality vector qt .

As discussed earlier, we define quality as the suitability of a device
to a given sensing task, in that if the sensor data Xk

t from a device
Dk accurately predicts the task-at-hand, then qkt = 1. We leverage
pre-trained device-specific sensing models Mk : X → y, which
predict the output y given the sensor data X from device Dk . As
shown in Figure 4a, at each step t (t = 1....N ), we apply the models
Mk to the the data Xk

t to generate predictions ykt . Each prediction
ykt is then compared with the ground truth class at step t : γt and a
quality output qki is generated as follows:

qkt = 1(y
k
t = γt ) (3)

In other words, if the prediction from device Dk matches the
ground truth at step t , we say that the data from this device has
good quality and set qkt as 1. Finally, as shown in Figure 4b we use
(Xt , qt ) as the labelled training samples to train the quality model.

Network architecture:We use a Siamese neural network architec-
ture to train the model for the quality function; we call it the quality
model. As shown in Figure 5, a Siamese neural network consists of
two or more sub-networks (or towers), all of which share the same
weights. Each tower receives sensor data Xt from a different device
and extracts higher-order features, e.g., by using convolution and
pooling layers. These feature vectors are then compared against
each other by the subsequent layers of the network to assess the
quality ordering across devices.

Our choice of using Siamese neural networks is motivated by
two factors. a) Input similarity: As the input sensor data from mul-
tiple devices is of the same kind (e.g., time-aligned accelerometer
data), we can use weight-sharing identical sub-networks to extract
higher-order features and compare them. Similar approaches have
been used in the image comparison literature [16] b) Memory opti-
misation: By sharing the weights across multiple sub-networks, we

275



SenSys ’19, November 10–13, 2019, New York, NY, USA Min et al.

Fig. 5: Siamese neural network architecture. The feature extraction
sub-networks CNNk share the same weights w .

can significantly reduce the size of the quality model, thus making
it more feasible to run on devices with limited runtime memory.

Implementation: We implement our Siamese neural network
shown in Figure 5 in Keras. The model consists of k weight-sharing
CNN towers (one for each of the k devices). The inputs to the towers
(Xt ) are raw or lightly-processed sensor data depending on the sens-
ing task. For the HAR task, we input the raw IMU data to the device-
specific towers. For the audio tasks, we extract log-spectrograms
features and provide them as input to different towers. The input
data is then processed by the CNN sub-networks to extract higher-
order features. We use three 2D convolution and pooling layers for
feature extraction, followed by a GlobalAveragePooling layer. The
outputs of each tower are concatenated and compared using two
fully-connected layers. As the individual tasks in our MTL model
have binary outputs (‘0’ or ‘1’), we use sigmoid activation in the last
layer of the network and binary cross-entropy as the loss function.
The network is trained using the Adam optimiser.

4.1.3 Merits and Demerits. The two assessment methods have their
merits and demerits and can be used selectively or in a collaborative
way depending on the conditions. Here, we discuss their prereq-
uisite and (de)merits. We provide a systematic evaluation of two
methods across multiple motion and audio datasets in §5.1.

HQA: Compared to LQA, the biggest benefit of HQA is that it
does not require additional data, e.g., for training a quality model.
Also, it can easily adapt to changes in device availability, e.g., when
a new device is added, or a device is temporarily unavailable, be-
cause the HQA function is computed individually. However, the
HQA has limitations from the perspective of sensing models. First,
the models need to provide confidence values as output, e.g., an
output of the softmax layer in DNN, rather than a select label. Sec-
ond, the confidence values need to be carefully calibrated with
a large validation dataset, which is unusual for the conventional
development of sensing models.

LQA: Different from HQA, LQA takes a data-driven approach,
and thus its performance can enhance if a large dataset is available;
note that the dataset required for training the quality model is not
necessarily to be the same dataset used for training the sensing
model. It is also possible to personalise the quality model using
online learning. On the downside, when a new device is added to
the ecosystem, the quality model needs to be learned again, thereby
incurring an additional cost for computing and data. We discuss
the potential solutions to address those limitations in §6.

4.2 Execution Planner
The execution planner is an essential component for the execution
engine of runtime quality assessment. It uses the assessment output

to dynamically orchestrate model execution across devices over
time, as illustrated in Figure 1. It works as follows:
• STEP 1: At any given instance, it collects sensor data from all
devices for a specific period (assessment window).

• STEP 2: Using either raw sensor data or processed features, it
estimates the sensing quality of the available devices, applying
runtime quality assessment functions (HQA or LQA) and chooses
the device with the best quality for the underlying inference task.
The selected device is used for the next k seconds (referred to as
the execution window) for computing inferences. In the meantime,
all the remaining devices are deactivated.

• STEP 3: After each execution duty cycle (assessment window +
execution window), it re-runs the process of assessing the sensing
quality and selecting the best device.
In § 5.3.1, we illustrate how different assessment windows and

execution duty cycle values affect the performance of our system.
The execution planner runs on a smartphone in the current

implementation, but canmove dynamically depending on the device
availability, e.g., moving from a phone to a watch if the phone
becomes unavailable. We leave its implementation for future work.

5 EVALUATION
5.1 Experimental Setup

Sensing tasks: We focus our experiments on two widely-used
sensing modalities, motion and audio, and representative sensing
tasks for them. For motion sensing, we select human activity recog-
nition (HAR), which is performed over motion data captured from
an Inertial Measurement Unit (IMU). For audio sensing, we choose
keyword spotting and emotion recognition; their respective goals are
to detect the presence of a keyword and the emotion of a speaking
person in a given speech segment. These sensing tasks are suitable
for multi-device environments because most of personal and IoT
sensory devices are equipped with IMUs and microphones.

Datasets: To evaluate the performance of our approach in the
HAR task, we use two public datasets which contain IMU data from
multiple wearable devices: the Opportunity activity recognition
dataset [29] and the RealWorld (HAR) dataset [35].

The Opportunity dataset consists of data collected from 4 partic-
ipants performing naturalistic activities in a sensor-rich environ-
ment. While performing the activities, multiple IMUs are placed
on a participant’s body at different locations such as arms, back,
and feet. Each IMU consists of 3-axis accelerometer and 3-axis gy-
roscope, sampled at 30Hz. Each participant performed 6 sessions: 5
runs of activity of daily living (ADL) where they performed daily ac-
tivities with no constraints, and 1 drill session where they repeated
20 times a set of 17 activities. The ADL runs are characterised by
larger variability. In our analysis, we used three devices on a hip, a
left lower arm, and a right shoe by default and target to detect the
mode of locomotion: stand, walk, sit and lie. In total, for all users
and all recordings the dataset consists in 3653 modes of locomotion
instances of variable duration (between ~0.2 and ~280 seconds).

The RealWorld dataset includes IMU data (3-axis accelerometer
and 3-axis gyroscope) recorded from 15 participants performing 7
activities: climbing stairs down and up, jumping, lying, standing,
sitting, running/jogging, and walking. The duration of each activity
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Table 1: Device mapping from the datasets to energymeasurements

Motion Pixel 3 LG Urbane 2 RPi Zero W
Opportunity hip left lower arm right shoe
RealWorld thigh forearm head
Audio Pixel 3 LG Urbane 2 Rpi 3
Keyword Matrix ReSpeaker PlugUSB
Emotion Matrix ReSpeaker PlugUSB

Fig. 6: Hardware setup of the power experiments.

for all participants is roughly 10 minutes except for jumping which
is around 1.7 minutes due to physical exertion. Seven smartphones
placed at different body positions have been used for data collection
with a sampling rate to 50 Hz. In our evaluation, we use three
devices on a thigh, a forearm, and the head by default. Refer to
[29, 35] for additional details about the two datasets.

For audio sensing, we use the Keyword and Emotion datasets
in [15]. The Keyword dataset consists of 2,250 1-second long speech
files belonging to 10 keyword classes (yes, no, up, down, left, right,
on, off, stop, go). The Emotion dataset is a collection of 1,440 English-
language speech segments which were spoken by actors while
expressing a range of emotions such as calm, happy, sad, angry,
fearful, surprise, and disgust. The authors of [15] re-recorded these
datasets at 16 kHz on three different embedded microphones simul-
taneously, thereby establishing a multi-device scenario that we aim
in this paper. All datasets are split to ensure independence between
the training and test set.

Noise augmentation: All four datasets were collected in a con-
trolled setup and contain only a limited amount of real-world vari-
abilities. As discussed in §3.1, device and time variabilities are two
key factors that influence sensing accuracies – therefore we aug-
mented real-life noise to the datasets in a principled manner to
consider time variability; note that all datasets already contain
device variability as they were recorded from different devices.

For the motion datasets, we used the data augmentation methods
proposed in [36]. In [36], the authors introduced seven augmen-
tation methods for IMU data on wearables: rotation, permutation,
time-warping, scaling, magnitude-warping, jittering, and cropping.
For example, rotation consists in augmenting data to reflect different
sensor placement like an upside-down placement and permutation
is to randomly perturb the temporal location of within-window
events (See [36] for other methods). They enable us to consider
real-life noise which cannot be observed in the data collected in a
lab-controlled setting, e.g., rotating of a smartwatch. We randomly
chose a period between 20 seconds and 2 minutes and applied a
randomly selected augmentation method; the intervals between
noise periods were randomly selected between 2 and 5 minutes. We
repeated this procedure independently on each device and on each
dataset to ensure time variability in a device-independent way.

For the audio, we sampled examples of real-world noise from
the publicly available ESC-50 environment sound classification
dataset [26] and added them to the audio datasets. The principle is
that time variability of audio sensing mainly comes from various
acoustic noises in the environment, e.g., vacuum cleaner noise and
door creak – clearly, the amplitude of the noise received at each
microphone will depend on its distance to the noise source and
properties of the room. We assume that only a single type of noise
is present in the environment at a given time, and each noise lasts
for at least 15 seconds. We sampled a noise segment from the eight
sources in [26] and augmented it for a randomly selected period
between 15 and 60 seconds. More importantly, the amplitude of the
noise is randomly selected for each microphone so that different
microphones receive different noise powers.

Models. We use state-of-the-art DNN to build the task-specific
sensing models. For HAR, we employ the architecture proposed
in [25]. It consists of a CNN-based feature extractor with 4 residual
blocks containing 2 convolutional layers each. They are followed
by two fully-connected layers respectively with 1024 and 128 units,
and then with an output layer of 4 units corresponding to our lo-
comotion target classes. For the Keyword, we use the keyword
detection architecture proposed in [40]. The input to this model is a
two-dimensional tensor extracted from the 1-second-long keyword
recording, consisting of time frames on one axis and MFCC on the
other axis. The model consists of two convolutional layers, followed
by a global average pooling layer and a fully-connected layer. Simi-
larly, for the Emotion, we use a CNN architecture comprising of 2
convolutional layers and 1 fully-connected layer, proposed in [1].

Baselines: We evaluate our approach against three baselines:
• Single: This baseline represents the traditional practice in sensing,
where only a single device is used for sensing inference without
any collaboration with other devices. Note that each model is
trained for each device using the data from the very device.

• Voting: At any given point in time, we compute the inferences
from each device individually, and select the output that has been
predicted by the majority of the devices.

• Fusion: we train a fusion model that takes as input the sensor
streams from all devices at the same time and outputs the pre-
dicted activity. We develop the fusion model based on [25].

For the parameters of HQA and LQA, we set 1 second to the assess-
ment window size and 10 seconds to the duty cycle period.

Performance metrics: We consider two metrics in the evalua-
tion: recognition accuracy and resource utilisation. For the former,
we use the micro-averaged F1 score [38], which aggregates the
contributions of all classes to compute the average metric. This
metric is preferable in situations where the datasets are imbalanced
(like the datasets used in this work). For the validation, we split all
datasets into two parts; 70% for sensing model and 30% for a quality
model for LQA. Then, we split each part again into training and
test dataset. We used the leave-one-session-out validation method.

As a resource metric, we use the total energy consumed by the
entire set of devices over a period of one hour (measured in Joules).
To exhaustively evaluate the power characteristics of all configura-
tions in an in-the-wild context, it would be necessary to perform
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(a) Opportunity dataset
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(b) RealWorld dataset
Fig. 7: Performance comparison for activity monitoring tasks
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(a) Keyword detection dataset
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(b) Emotion detection dataset
Fig. 8: Performance comparison for audio understanding tasks

multiple deployments, each one with a different set of parameter
values. In fact, we need to test various combinations of execution
planner parameters, quality assessment approaches, and different
baseline models. To address this challenge, we devise an analyt-
ical energy model to estimate net energy increase in any given
configuration, based on our power measurement of the individual
operations, i.e. sensing, model execution, data transfer, but exclud-
ing the idle state. We present the details of the energy model and
validate its accuracy with the Monsoon Power monitor in §5.4.

To consider realistic energy consumption, wemapped the devices
in the dataset to four different off-the-shelf wearable devices, Pixel
3 smartphone, LG Urbane 2 smartwatch, Raspberry Pi Zero W (RPi
ZeroW), and Raspberry Pi 3 (RPi 3) as shown in Table 1. We decided
the mapping based on the device placement for the motion dataset
and the hardware resource for the audio dataset. RPi Zero W and
RPi 3 represent wearable devices with IMU and space-embedded
conversational agents with a microphone, respectively. Figure 6
shows the hardware setup of our devices and energy measurement.

5.2 Overall Performance
Figure 7 and 8 show the performance of our approaches compared
with the baselines, for the motion and audio task, respectively. The
bar graph represents the F1 score and the line graph shows the total
energy consumption of three devices; note that the scale of y-range
for the energy consumption is all different. Overall, compared to
the cases when only a single model is used, HQA and LQA have an
absolute increase of 11% and 12% in the F1 score over the average
of all single models across all datasets, respectively. Even with the
case when the best single model is used, HQA and LQA show 7%
and 8% improvement of F1 score. Such improvement is remarkable,
considering that it is made just with the selection of devices without
further optimising the sensing models nor leveraging more dataset.
In terms of energy, the total energy consumption of HQA and LQA
is 120 J and 131 J higher than the average consumption of the single
models. Considering that three devices are used for one hour, it
can be seen that HQA and LQA incur 11.0 mW and 13.1 mW of the
power overhead on each device, which can be seen acceptable in

daily use. The low power overhead of HQA and LQA is enabled
by the duty-cycling based execution planning. The initial cost of
transferring data from all devices to the one that runs the quality
model or running multiple models gets amortised over time. As a
result, the energy cost of the HQA and LQA with the combination
of the execution planner becomes similar to the cost of having a
single device producing inferences while the others are idle.

Also, HQA and LQA show the comparable F1 score to fusion and
outperform much voting. More specifically, the average F1 score
of HQA and LQA is 72%and 73%, respectively, whereas the score
of fusion and voting is 73% and 63%. However, more importantly,
the energy consumption of HQA and LQA is significantly lower
than both fusion and voting. While HQA and LQA consume 349 J
and 371 J on average across the dataset, fusion and voting consume
1,308 J and 1,598 J, respectively. Compared to single model cases,
fusion and voting can be seen to consume additionally 99.9 mW and
126.2 mW on each device, respectively. Also, the power overhead of
fusion and voting increases significantly as the number of available
devices increases. We will discuss the detail in §5.3.

We analyse the characteristics for each dataset. Focusing first
on the motion datasets, Figure 7 shows how HQA and LQA always
outperform the single device baselines in terms of the inference
accuracy. For example, the F1 score of HQA and LQA is 81% and
79% on the Opportunity dataset in Figure 7a and 92% and 89% in the
RealWorld dataset in Figure 7b. On the other hand, the on-average
outperforming single device is the watch for Opportunity and the
smartphone for RealWorld and their F1 score is 73% and 87%, respec-
tively. The results show that the proposed approaches are capable of
selecting the most appropriate device and therefore achieve better
performance over time compared to any single device.

For the total energy in the Opportunity dataset, HQA (196 J)
and LQA (201 J) consume more energy than single-device models
on the phone (39 J) and the watch (34 J). However, surprisingly,
they consume less energy compared to the case when RPi Zero
W was used continuously (293 J). For a deeper understanding, we
investigate the per-device energy consumption of HQA and LQA.
In HQA, the phone, the watch, and RPi Zero W consume 77 J, 46
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J, and 73 J, respectively. In LQA, they consume 78 J, 41 J, and 90
J. The results show that, compared to the phone/watch-specific
models, the energy increase of HQA and LQA mainly comes from
two sources: one for the overhead of the operations for the device
selection and the other for the high energy consumption on RPi
Zero W for the sensing operations (See §5.4 for the details.) The
energy saving of HQA and LQA is remarkably shown compared
to the fusion (1089 J) and voting (1246 J) mechanisms. The fusion
consumes 687 J, 270 J, and 133 J on the phone, watch, and RPi Zero
W, respectively and the voting consumes 659 J, 267 J, and 320 J. The
relatively high energy on the phone is also caused by receiving the
data from all the devices and processing the fusion model or the
voting decision. The per-device energy consumption is different
depending on the dataset because they have different ratio of the
selection of the devices. However, the other datasets also show the
similar trend, i.e., energy increase of HQA and LQA compared to
phone/watch baselines, but energy decrease compared to RPi Zero
W and RPi 3 baselines. We omit the results in the other datasets.

We compare the performance of our approaches to voting and
fusion on the audio datasets in Figure 8. The results show that
HQA and LQA show comparable F1 score to fusion and outperform
voting. More specifically, the F1 score of HQA and LQA is 67% and
72% in Figure 8a and 79% and 82% in Figure 8b, respectively. The
F1 score of fusion is 71% and 77% and the F1 score of voting is 62%
and 58% for the Emotion and Keyword dataset, respectively. This
is surprising, especially considering that HQA and LQA use one
device at a time during the duty cycle period, whereas fusion and
voting use all the devices continuously. We conjecture that this is
because the devices with low sensing quality could degrade the
performance of fusion and voting.

For the energy, fusion and voting consume significantly more
energy than HQA, LQA, and single-device models. For example, the
total energy consumption of fusion and voting is generally higher
than 1400 J, whereas HQA and LQA remain under 700 J. While the
energy consumption of HQA and LQA is higher than the energy
consumed by a single model on a smartphone and a smartwatch,
the increase is mainly contributed by the high power consumption
of RPi 3. Also, the energy consumed by HQA and LQA is still lower
than the energy of a single model on RPi 3. We discuss the details
about the energy cost in §5.4.

Although fusion and voting show the high F1 score, they are also
the two methods with high energy cost. Data from all devices need
to be transferred continuously to the device which runs the model
in the fusion case and multiple models need to be executed for a
single prediction in the voting case. On the contrary, the cost of the
runtime quality assessment is incurred only during the assessment
window, when selecting the best device. Therefore, the initial cost
of transferring data from all devices to the one that runs the quality
model or running multiple models gets amortised over time.

5.3 In-depth Analysis
We conduct an in-depth analysis to understand the behaviour of
the quality-aware device selection more deeply. Due to space con-
straints, we report the analysis result on the Opportunity and Key-
word dataset for the motion and audio task, respectively. The results
on the RealWorld and Emotion dataset show similar trends.
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Fig. 9: Effect of duty cycle (Opportunity); assessment size = 1
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Fig. 10: Effect of duty cycle (Keyword); assessment size = 1

5.3.1 Effect of device selection parameters. The duty cycling is key
to determine the performance of quality-aware device selection. We
examine the effect of two parameters on the performance, execution
duty cycle period and assessment window size.

Execution duty cycle period: A key question is how far we
can increase the duty cycle period to minimise accuracy loss and
maximise energy saving at the same time. Figure 9 shows the F1
score and total energy consumption for the motion task on the
Opportunity dataset while varying the duty cycle period. With the
increase of the period, the F1 score tends to decrease for both HQA
and LQA, but surprisingly, their decrease is marginal. The decrease
of F1 score when the duty cycle period was set to 1 second and
60 seconds is 2% and 4% for HQA and LQA, respectively. We also
observe that the total energy consumption decreases exponentially
as the duty cycle period increase. It is because the number of exe-
cutions of quality assessment windows, in which more than one
device is active, decreases accordingly. Figure 10 shows the results
for the Keyword dataset. While the overall trend is similar, the F1
score does not monotonically decrease even with the increase of the
duty cycle period. We conjecture that this is because the temporal
locality of the audio dataset is relatively more irregular. However,
we can still observe that the F1 score is the highest when the duty
cycle period is set to the shortest, 1 second, which shows that our
quality assessment methods select the most accurate device at each
time interval. For a more systematical study of the selection of the
duty cycle period, we plan to collect a larger dataset in real-life
situations. We leave it as future work.

Assessment window size: We further investigate the effect
of the assessment window size on the performance. When the
assessment window size is larger than 1 second, we adopt the
majority voting scheme to select the best device. Figure 11 shows
the F1 score and total energy consumption of the motion task with
the Opportunity dataset. As expected, the F1 score tends to increase
both for HQA and LQAwhen the assessment window increases, but
the increase is not significant. The increase for HQA is 2% the F1
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Fig. 11: Effect of assessment window (Opportunity); duty cycle = 10
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Fig. 12: Effect of assessment window (Keyword); duty cycle = 10
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score when the assessment window is set to 1 second and 5 seconds
is 81% and 83%, respectively. Similarly, the increase for LQA is 1%;
the F1 score is 78% and 79% when the window size is 1 second and
5 seconds, respectively.

On the other hand, the total energy consumption increases lin-
early with the assessment window size because larger data needs
to be processed and transmitted. Figure 12 shows the results of the
Emotion dataset. While the F1 score of LQA saturates, the increase
of HQA’s score is clearly shown. The F1 score of HQA increases
from 0.61 to 0.68 when the assessment window size is set to 1 sec-
ond and 5 seconds, respectively. We conjecture that it is because
the voting scheme with longer window size compensates the rela-
tively lower performance of HQA. The energy consumption shows
a similar trend to that of the motion task.

5.3.2 Effect of number of devices . We examine the effect of the
number of available devices. For the analysis, we use the Oppor-
tunity dataset as it contains multiple devices deployed on various
locations on the participants’ body. In addition to the default setting,
we consider two more devices, one on a right lower arm and the
other on a left shoe. For the energy estimation, we mapped two new
devices to LG Urbane watch and RPI Zero 3, respectively. Figure
13 shows the results of our quality assessment methods (HQA and
LQA) and two multi-device baselines (fusion and voting). Figure
13a shows their F1 score while increasing the number of devices.
Overall, the F1 score of all schemes increases as the number of
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Fig. 15: Effect of heterogeneous classifiers; in each box, the two left-
most bars are HQA and LQA and the three rightmost bars are the
sensingmodels (the type of classifiers is written in the X-axis label.)

available devices increases, as expected. However, while fusion and
voting show a meaningful increase, the increase of HQA and LQA
is marginal. The increase of the F1 score when the number of de-
vices is 2 and 5 is 0.07 and 0.19 for fusion and voting, respectively.
On the contrary, the increase both of HQA and LQA is less than
2%. This is because the F1 score of our quality assessment meth-
ods is constrained to that of single-device models, whereas fusion
and voting can leverage larger and more diverse data altogether
for each inference. However, regardless of the number of devices,
LQA and HQA always show much higher F1 score than voting and
comparable score to fusion.

Figure 13b shows the total energy consumption while varying
the number of devices. Fusion and voting consume almost linearly
proportional to the number of devices because they require all the
devices to process the sensing model and transmit the data all the
time. However, the increase in power consumption of our quality
assessment methods is marginal because the number of devices
usedmost of the time is always 1. Also, surprisingly, the total energy
consumption of LQA and HQA with 5 devices is still much lower
than fusion and voting with 2 devices.

For a deeper understanding of the behaviour of our quality as-
sessment methods, we look into how many times each device is
selected. Figure 14 shows the ratio of the selection of the devices
from LQA. The average F1 score of single-device models is 61%,
78%, 67%, 78%, and 68% for the device deployed on hip, lower left
arm, right shoe, right upper arm, and left shoe. Interestingly, we see
that devices are mostly selected in order of their average F1 score.
In this regard, the device on a left lower arm was selected the most
until the number of devices is 3 and the device on a right upper
arm was selected the most whenever it was included. This shows
that the sensing quality of devices is well reflected when LQA is
adopted. We omit the result from HQA as it shows similar trends.

5.3.3 Effect of heterogeneous classifiers. We study the performance
of our techniques when different types of classifiers are used. For
the study, we further developed the sensing models with random
forest (RF) and support vector machine (SVM) classifiers for the
Opportunity dataset. Figure 15 shows the F1 score with different
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Table 2: Average power consumption for the motion model

Operation Power (mW)
Smartphone Smartwatch RPi Zero W

Idle 28.08 27.81 442.58
Sense 7.24 8.59 29.42

Sensing Model 3.66 0.77 51.84
Quality Model 2.40 1.53 19.80
Bluetooth Tx/Rx 186.66 68.47 9.74

combinations of classifiers. Our techniques still provide meaningful
benefits regardless of the classifier type, even though the benefit
differs depending on the combinations of classifiers. For instance,
in the case when RF, SVM, and CNN are used on the hip, left
lower arm, and right shoe, respectively, F1 scores of HQA and LQA
increase by 10% and 11% compared to the average of the single-
device accuracies. We omit the energy numbers as they are almost
similar to the ones reported in Figure 7a.

5.4 System Overhead
We aim at understanding the overhead in terms of power consump-
tion, incurred by the entire set of devices for the two runtime sensor
quality assessment approaches introduced in §4. Figure 16 shows
the main operations (model execution and data transfer) performed
by the devices during the assessments and execution windows. We
observe how the main difference is in the operations performed
during the assessment window. In HQA, the assessment compu-
tation is essentially distributed across the devices since each one
executes the local sensing model and reports the confidence value
to the master which then uses an inexpensive heuristic to select
the appropriate device. In LQA, the devices stream raw sensor data
to the master, which then executes the quality model to select a
device. LQA is more network intensive, because more data needs
to be transferred (200Bytes/sec compared to 10Bytes/sec for HQA),
but each device performs less computation locally.

Table 2 reports the power consumption measurements for each
device when executing the quality assessment operations for the
motion datasets. We find the smartphone and smartwatch to be
energy efficient during computation but require significant energy
during data transfers over Bluetooth. It implies that an execution
model that requires more frequent and longer data transfers would
incur a higher energy consumption over time. By contrast, the
Raspberry Pi Zero consumes more energy during sensing and com-
putation, probably due to a less power-optimised processor, which
is not designed to run on batteries.

As we have seen in §5.2, there is a limited difference between the
overall power consumed by the two approaches. That derives from
the fact that the model execution, either the sensing model on each
device or the quality model on the master, adds modest overhead to
the overall power consumption, as highlighted in Table 2. Addition-
ally, the limited amount of data transferred in the HQA does not
provide a significant benefit because Bluetooth transmissions are
the most expensive operations and we found only a very limited
difference in power consumption when transmitting 10 or 200Bytes.
This shows how, at least for typical smart devices like phones and
watches, the potential for power optimisations could come from
more efficient transmission media and protocols.
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Fig. 16: Main operations involved in HQA and LQA. Device 2 (or-
ange) is themaster device responsible to perform the quality assess-
ment and device selection. SM stands for Sensing Model.

Based on the power profiles in Table 2, we devise an energy
model to estimate the total energy consumption from a sequence of
operations. The energy model can be simply expressed as follows:∑

d

∑
i
ti × pi

where d is a device, ti is the duration of ith operation and pi is
the power profile of ith operation. However, in the actual imple-
mentation, we adopt a finite state machine-based power model
to consider power state of hardware components and sharing ef-
fect [24]. We verified our power model with four 30-minute-long
sequences. We developed an Android application that executes a
script of operations (as in Figure 16). While running the applica-
tion, we measured the energy consumption with Monsoon power
monitor and compared it with our estimation obtained from our
power model. The results show that our proposed model achieved
91.2% of the accuracy on average across the devices.

5.5 Deployment Study
We report a small-scale deployment study that demonstrates the
manifestation of different techniques discussed in this paper in a
real-world artefact.

Application and devices: We developed a personal-scale well-
being monitoring application that captures motion activities using
an IMU (walking, standing, and sitting) and emotional states using
a microphone. These attributes are then summarised to offer users
with visual and conversational feedback of their physical andmental
well-being (see Figure 17a). The application runs on a smartphone
and can connect to multiple sensory devices providing motion and
audio data. In our experiment, these devices were Google Pixel
3 Smartphone, LG Urbane 2 Watch, and an earbud in [8] - each
containing an accelerometer, a gyroscope, and a microphone. The
watch and earbud are connected to the smartphone over BLE for
transferring data as needed. We used the same activity and emotion
models as described in the earlier section. The application uses the
runtime quality assessment and execution planning capabilities
to selectively use one of these devices and their corresponding
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Fig. 17: Prototype well-being management application, (a) screen-
shot (left), and (b) timelines of two users sessions (right).

models to track the well-being attributes. Please note that we do
not claim the novelty and performance of this application; instead,
we evaluate our quality-aware device selection strategy through
this well established sensing service.

Study design and settings: We followed the scenario-based
analysismethodology [9] to evaluate the performance of our quality-
aware device selection strategy. Essentially, we developed a 10-min
experiment session with 10 one minute blocks. In each block, we
exposed the users to a different condition concerning devices. These
situations include varying device 1) placement, 2) distance, and 3)
availability. These conditions were randomly assigned to different
blocks, however, counterbalanced across participants.

We recruited a group of 12 people using stratified sampling. Each
user took part in a 10-min session with three devices performing a
set of motion activities (walking, standing, sitting) or speaking with
different prosody to express positive or negative emotion following
predefined scripts. We set the length of the assessment window
and execution duly cycle to 1 and 10 seconds, respectively. This
decision means the quality assessment function was executed 60
times for each experimental session, contributing to 480 operations
in total across all the sessions. Out of 120 1-min blocks across all
participants, HQA (margin sampling) was used for 60 blocks, and
LQA for the rest. In both cases, half of the blocks were for activity
and the other half for emotion tracking. For each of this block, we
assigned the ideal device that we later use for quality assessment.

Results: Given the limited scale and constrained settings of the
study, we only report a subset of results that are indicative of the
real-world performance of the proposed techniques. Essentially,
out of 120 blocks, in 107 blocks (89.2%) a device was selected cor-
rectly. HQA selected 53 (88.3%) and LQA selected 54 (90.0%) devices
correctly. Please note that we are reporting the selection perfor-
mance at a 1-minute granularity with the dominant device for that
minute. Figure 17b illustrates two representative timelines of the
experiment with activity and emotion tracking.

6 DISCUSSION
We have explored the possibility of assessing the quality of sensing
models at runtime using two different approaches: HQA which
relies on the confidence values reported by the sensing models
and LQA which instead adopts a data-driven approach to learn
a function which determines the quality of the models. We have
found that while both approaches lead to increased prediction per-
formance with a reduction in energy cost, the difference of these
two metrics between the two methods is often not significant. This
has implications on the criteria used to select one method or the

other. In §4.1.3, we mentioned that important drawbacks of the LQA
approach are the need for labelled training data and the limited
flexibility to changes in the device topology once the quality model
has been trained. A possible solution to the first issue could be re-
searched in the use of non-supervised machine learning techniques
to attempt to learn the quality model without ground truth data.
For the second issue, we envision the possibility of integrating a
series of attention blocks [39] in the architecture of our siamese
model. This should allow the model to automatically cope with the
absence of sensor data in input by weighting the internal features
accordingly to the data available at each moment in time. In addi-
tion, our work does not evaluate the generalisability of the LQA
approach to new devices – future research should evaluate transfer
learning possibilities for LQA, that is, whether the weights of a
pre-trained Siamese neural network could be used to initialise the
training process of another LQA model for new devices. Transfer
learning and domain adaptation techniques can significantly reduce
the amount of data needed to train LQA models for new scenarios.

Another aspect which is currently not included in HQA and
LQA is the possibility of including resource metrics into the quality
assessment computation. It could be useful to include information
about the current status of the devices, such as remaining battery or
CPU and memory load, as additional inputs for the device selection
procedure, e.g., selecting the device in away of balancing the battery
life of the devices while achieving the reasonable accuracy.

This ties into a possible improvement of the execution plan-
ner, which can be dynamic and allow the definition of policies to
prioritise accuracy or energy efficiency. As presented in §5.3, the
parameters of the execution planner could be adjusted to obtain
better prediction performance or more energy efficiency. However,
these two aspects might require adaptation over time as the system
status evolves. For example, as the energy available in the devices
starts depleting, longer duty cycle windows could be adopted.

7 CONCLUSION
In this paper, we presented two complementary techniques for
runtime assessment of sensing models and a quality-aware collabo-
rative sensing system based on them for multi-device environments.
Borrowing principles from active learning, our first technique op-
erates on three heuristic-based quality assessment functions (HQA)
that employ confidence, margin sampling, and entropy of models’
output respectively. Our second technique, a learning-based quality
assessment function (LQA) is built with a siamese neural network
and acts on the premise that runtime sensing quality can be learned
from historical data. Our systematic evaluation across multiple
motion and audio datasets shows that these techniques can boost
12% increase in overall inference accuracy through dynamic device
selection at the average expense of less than 13 mW power on
each device while compared against the single-device approach. In
addition, they consume considerably lower energy than the fusion
approach - almost inversely proportional to the number of devices.
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