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ABSTRACT

Continuous blood pressure monitoring is the key to mitigate sig-
nificant risks for stroke, heart failure and coronary artery disease.
Current gold-standard blood pressure devices cause discomfort and
interfere with users’ activities. This paper explores an earable sys-
tem, which continuously monitors users’ blood pressure from the
ear. We propose a measurement technique based on the vascular
transit time which utilises the time difference between the S1 heart
sound and the PPG upstroke in one pulse cycle. We develop a multi-
modal sensing hardware and processing pipeline and we evaluate it
with 10 participants showing average errors in line with the range
recommended by the Association for the Advancement of Medical
Instrumentation: 4.07 mmHg for systolic and 5.61 mmHg for dias-
tolic blood pressure.

Index Terms— Blood pressure, heart sounds, in-ear micro-
phone (in-ear PCG), photoplethysmography (PPG), cuffless.

1. INTRODUCTION

Hypertension (high blood pressure) causes hundreds of thousands of
deaths every year and is a significant risk factor for health conditions
such as stroke, heart failure and coronary artery diseases [1, 2]. Fre-
quent blood pressure (BP) measurements can help with early diagno-
sis and reduce the risks associated with high or low blood pressure.

Catheterization is the gold standard for measuring BP, however,
it is invasive and requires expertise since it involves inserting a sen-
sor inside an artery [3]. Non-invasive methods such as auscultation
and oscillometry [4], instead, employ an inflatable cuff around the
arm to occlude the artery while measuring. Artery occlusion can
also be achieved by partially blocking the artery through an inflatable
balloon inside the ear [5]. However, cuffs and ear-worn pumps are
uncomfortable to wear, slow and occasionally painful. Additionally,
even if ambulatory BP devices exist, they disrupt daily activities. All
these factors contribute to the limited applicability of cuff-based BP
monitoring for longitudinal and frequent measurements.

Common cuffless methods are based on pulse arrival/transit time
(PAT or PTT), which refer to the time taken by a pulse wave to travel
between two body locations [6]. However, PAT-based methods are
not accurate due to the pre-ejection period variability, i.e., the delay
between the appearance of the electrical signal on the electrocar-
diogram (ECG) and the opening of the aortic valve [6]. Addition-
ally, PAT/PTT techniques require multiple sensing devices on the
body, typically an ECG on the chest and a photoplethysmography
sensor (PPG) on a peripheral location. Some works experimented
with positioning sensors in or around the ear but still had to rely on
other devices on the body to estimate BP such as SCG [7], BCG [8],
multi-site PPG [9], or bio-impedance [10]. Other works employed
cumbersome ECG electrodes attached to the neck below the ear or

behind the head [11, 12]. These approaches however, increase sys-
tem complexity and limit usability.

We overcome the aforementioned issues by exploiting the differ-
ent propagation times of sound and blood through the human body
and estimate blood pressure from a single device in the ear. The ear
is a remarkable location to measure not only blood pressure but also
a plethora of other vital signs (e.g., heart rate and blood oxygen satu-
ration). The recent popularity of ear-worn devices (i.e, earables) and
earbuds with in-ear microphones or PPG sensor integration makes
them a perfect avenue for unobtrusive BP monitoring [13, 14].

The key to our approach is embedding an in-ear microphone and
a PPG sensor in the same earable device. This multi-modal approach
can measure the vascular transit time (VTT). VTT is the delay be-
tween the moment the heart starts pumping blood (denoted by the
first heart sound, S1) and the upstroke of the corresponding PPG
signal (Figure 1). Since the sound generated from the heart pumping
blood travels through the body faster than the blood moving through
the vessels, we can record the acoustic signal and PPG waveform
from the same location on the body. We then identify the best mark-
ers for the two main heart sounds in the in-ear acoustic signal and
propose a pipeline for their detection. Once we determine the vascu-
lar transit time, we devise two models to continuously estimate the
systolic (SBP) and diastolic (DBP) blood pressure. Our approach
represents a stepping stone towards the non-invasive measurement
of BP from a single device exploiting an additional advantage, over
the PAT-based methods, since the VTT technique is not affected by
the PEP variability [15].

In summary, the contributions of this paper are:

• We develop a wearable device to simultaneously capture in-ear
acoustic and PPG signals.

• We propose a signal processing pipeline and analytical models to
estimate SBP and DBP from the VTT and the timing of the heart
sounds measured from our in-ear device.

• We evaluate the performance of our approach with 10 partici-
pants demonstrating a mean absolute error of 4.07 mmHg and 5.61
mmHg for SBP and DBP, respectively. This result is in line with
AAMI precision range recommendation. [16].

2. IN-EAR BLOOD PRESSURE MONITORING

The ear represents a perfect location for measuring blood pressure.
First, earables are becoming part of everyday life. Recently, they
are also living through a growing interest in healthcare and clinical
research [5, 13]. Second, ears have a dense vascular structure that
in combination with high blood perfusion enables the extraction of a
wealth of information from blood movements (e.g., heart rate, blood
oxygen saturation and respiration rate) [14]. Third, the ear canal of-
fers a unique location to detect internal body sounds that would be
otherwise difficult to record. Finally, the head is generally less sus-
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Fig. 1: Signals recorded from the chest and the ear showing vascular
transmit time (VTT) and ejection time (ET) intervals.

ceptible to motion artefacts due to the musculoskeletal system’s nat-
ural vibration damping and is at a fixed distance from the heart, both
essential features for high accuracy BP measurements. These con-
siderations motivated our work in estimating BP with a non-invasive
earable device.

2.1. Method Overview

In this work, for the first time, we aim to estimate BP from VTT and
ejection time (ET) [17] taken from a single in-ear device. Referring
to Figure 1, the VTT is the time delay between the first heart sound
(S1) and the upstroke of the corresponding pulse wave (measured
from a PPG sensor), while the ET is the time difference between
the first (S1) and the second heart sound (S2). The heart sounds are
produced by the closing of the heart valves during the systolic (S1)
and diastolic (S2) cycles and propagate through the body. Previous
works have estimated VTT using a phonocardiography sensor (PCG)
on the chest, to record heart sounds, and a PPG sensor at the fin-
gertip, to record the blood movement and the pulse waveform [18].
Recording the PCG signal at the chest ensures good quality signals
for heart sounds, however, the classic setup is limited in terms of
mobility because of the multiple sensing devices that a person needs
to use (one on the chest and one on the finger). Thus, a less obtrusive
and mobile sensor setup for the VTT-based method is needed.

In our approach, we rely on the different propagation times of
sound and blood in the human body. The sound generated from the
heart travels through the body at an average speed of 1500 m/s [19],
much higher than the blood movement in the arteries (in the order of
tens of cm/s) [20]. Hence, we propose to record the acoustic signal
(in-ear PCG) and PPG waveform from the ear and measure the VTT
which we then employ to estimate the BP. However, achieving this
with an earable device comes with the following challenges:
• Integrating a microphone and a PPG sensor in an earable while

ensuring good signal quality (i.e., stable PPG sensor contact and
proper ear canal seal) is not trivial.

• Identifying S1 and S2 heart sounds from in-ear acoustic signals is
challenging as the body heavily attenuates and distorts the signal
as it travels through tissues and organs [21]. Figure 1 shows how
S1 and S2 are clearly visible from the chest recording. The in-
ear recording presents a significantly different signal where the
accurate detection of the two sounds and their relative timing is
not obvious.

• While VTT has a linear relationship with SBP, DBP does not have
such clear formulation and requires other parameters to estimate.

2.2. Prototype Wearable Device

For our prototype (Figure 2), we select the InvenSense ICS-40330
analog microphone [22] due to its extended low frequency response.
The microphone is positioned inside an existing earbud casing facing
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Fig. 2: Prototype device with in-ear PCG and PPG sensors.

towards the ear canal. The signal is amplified with an amplifier built
around the MAX4466 [23] and then sampled at 16kHz by an ESP32
microcontroller [24]. The PPG signal is acquired at a frequency of
100Hz by a MAXM86161 [25] which is connected to the ESP32 via
I2C. The PPG sensor can record data at three wavelengths, green
(530nm), red (660nm) and infrared (880nm), however, for our ex-
periments we use only the infrared wavelength.

Our prototype weighs 18g and allows the replacement of the ear
tips inserted into the ear canal. We use foam tips of different sizes
to suit the characteristics of each participant. This ensures a com-
fortable experience while guaranteeing a good seal of the ear canal
which improves the SNR of the acoustic signal. The positioning of
the PPG has been also carefully chosen to enable consistent mea-
surements across participants. The sensor sits inside the concha, in
the outer ear, and points towards the antitragus which ensures a good
contact with the skin and shields the sensor from ambient light.

2.3. Heart Sounds Detection and VTT Estimation

We continuously process the raw data using a sliding window of
10 seconds with 90% overlap following the processing pipeline in
Figure 3. We remove the DC linear drifting in both in-ear PCG and
PPG signals by excluding the 6th-order polynomial fit from each
sub-window of 2.5 seconds in the current processing window. Then
each signal follows the pipeline differently to find the exact location
of S1, S2 sounds and the systolic peak in their time domain.

DC Removal

DC Removal

LPF at 4Hz

Gaussian 
Smoothing

Systolic peak 
detection

S1 marker 
detection

S2 marker 
detection

In-ear 
PPG

In-ear 
PCG

Fig. 3: In-ear PCG and PCG processing pipeline.

In-ear PPG systolic peak detection. Each cardiac cycle ejects
blood into the aorta which then propagates throughout the body. The
arrival of the blood at the arterial branches under the PPG sensor
creates a local peak on the PPG signal, called the systolic peak.
Firstly, we apply a Gaussian smoothing to remove high-frequency
noise in the detrended in-ear PPG signal, yet preserve the signal
magnitude. Then we use a peak detection algorithm within each
predefined non-overlapping sub-window to find the maximum of
that sub-window and mark it as the corresponding systolic peak.
In-ear PCG Forward-Backward Filtering. Since the normal
heartbeat range is 40-180 bpm, S1 and S2 happen at a frequency
below 3 Hz. Hence, we will need to apply a low-pass filter to
extract this frequency range of interest. However, using a low-pass
filter normally creates a time delay in the output signal and leads
to inaccuracies in detecting the exact location of S1 and S2 heart
sounds. This would lead to the wrong measurement of the VTT and
ET, resulting in poor performance for BP estimation. Thus, we look
for a proper filtering technique to ensure no phase distortion and
time delay and focus on the forward-backward filtering.

7

Authorized licensed use limited to: Nokia. Downloaded on July 17,2022 at 17:53:52 UTC from IEEE Xplore.  Restrictions apply. 



+1.96SD

-1.96SD

+1.96SD

-1.96SD

Fig. 4: Bland-Altman plot comparing in-ear BP and ground truth for
the leave-one-user-out cross-validation.

Let praw[n] and Praw(e
jω) be our in-ear PCG signal in time

and frequency domain. After applying a filter h[n] with transfer
function H(ejω) (i.e. forward direction), we receive: pfw[n] =
h[n] ∗ praw[n] with Pfw(e

jω) = H(ejω)Praw(e
jω).

Then we take its time-reversal and apply the same filter (i.e.,
backward direction) to get pbw[n] = h[n]∗pfw[−n] with Pbw(e

jω) =
H(ejω)P ∗

fw(e
jω).

We take the time-reversal of pbw[n] to get the final output:

Pfil(e
jω) = P ∗

bw(e
jω) = |H(ejω)|2Praw(e

jω) (1)

We then apply this technique on each sliding window with a 4
Hz low-pass filter on our in-ear PCG signal. The overall effective
transfer function, |H(ejω)|2, introduces zero phase and no time de-
lay. These characteristics help preserve features in a filtered time
waveform exactly where they occur in the unfiltered original signal.
S1 & S2 marker detection. S1 and S2 heart sounds create two pairs
of consecutive local negative peak and local positive peak in each
cardiac cycle of the filtered in-ear PCG signal, as visible in Figure 1.
These two pairs are followed by a PPG systolic peak in the same cy-
cle. Thus, we use that systolic peak as a pivot and search for the 2 lo-
cal maxima within its adjacent location. We then use those two local
maxima to search for the two corresponding local minima. From our
empirical observation, we locate the S1 marker at the zero-crossing
point of the peak pair which happens first in the time domain, and
the S2 marker at the positive peak of the remaining pair. Finally,
the VTT and ET are calculated as the time differences between the
systolic peak & S1 marker, and S2 & S1 markers, respectively.

2.4. Blood Pressure Model

Systolic Blood Pressure. The change in systolic blood pressure
measurement is correlated to the change in VTT [17]. Thus, the
SBP is usually related to the VTT by the linear approximation:

SBP ≈ α1V TT + α0 (2)

Diastolic Blood Pressure. The diastolic blood pressure instead, is
not directly related to VTT but it can be inferred from the SBP and
the Pulse Pressure (PP), which is the difference between SBP and
DBP, as DBP = SBP − PP . This poses the problem of how to
estimate PP.

Previous studies [26] proposed the relationship between PP and
Stroke Volume (SV) and the aortic root compliance C as PP =
SV/C. Stroke volume is the volume of blood ejected from each
ventricle due to the contraction of the heart and is shown to have a
linear relationship with Ejection Time (ET) [27]: SV = β1ET+β0.

Since VTT is considered as the time taken for a pulse wave to
travel along an arterial tube with length l: V TT = l

√
ρC/A, where

ρ is the fluid density, A and C are the cross-sectional area and com-
pliance of the tube, respectively.

+1.96SD

-1.96SD

+1.96SD

-1.96SD

Fig. 5: Bland-Altman plot comparing in-ear BP and ground truth for
the personalised models evaluation.

Thus we can re-write PP as:

PP =
SV

C
=

β1ET + β0

A
ρl2

V TT 2

Because A, ρ, C are user-specific parameters, we propose to es-
timate the pulse pressure as:

PP ≈ γ1
ET

V TT 2
+ γ2

1

V TT 2
+ γ0 (3)

Following the VTT and ET calculation in §2.3, we calibrate our
sysem with a BP groud truth device and estimate α and γ coef-
ficients using least-square fitting algorithm from equation 2 and 3.
While other works have derived similar relationships for PP based
on PTT, here we propose a formulation based on VTT and ET and
we show its effectiveness for the estimation of DBP. This model rep-
resents a baseline approach that fits well with the preliminary nature
of the work. A more sophisticated model with various parameters
(such as age, weight, height) [28] or machine learning models can
be applied. However, these approaches require a larger amount of
data to work properly. We aim to evaluate them in future work, after
we deploy our device to a larger population.

3. EVALUATION

3.1. Data Collection and Evaluation Procedure

Participants. We recruited 10 participants (2 females, avg. age =
29.6, std = 3.17). All participants were in good health and had no
heart or blood pressure condition. They were briefed about the study
and voluntarily consented to take part in it (compensation of $10).
The study received IRB approval before its beginning.
Protocol. The participants were asked to wear our wearable proto-
type on the left ear and the cuff for BP measurement on the left arm.
Since clinical-grade continuous BP measurements require invasive
techniques like catheterization, we opted for an accurate but conven-
tional monitoring device that relies on a cuff for the measurement.
For this purpose, we used the Omron M7 Intelli IT [29] to measure
the BP ground truth. Additionally, we attached a stethoscope con-
nected to a microphone to record the heart sounds directly from the
chest and compare them with the in-ear recordings.

For the entire duration of the experiment, the participants re-
mained seated, with their feet and back supported. In order to induce
temporary changes in the participants’ BP, we asked them to perform
two activities. The first one consists in taking slow and deep breaths,
this has been shown to lower the BP [30], and the second one in-
volves raising the BP temporarily by dipping the right hand in cold
water [31]. We do not use the valsava maneuver method because,
during a pre-study analysis, we found it to cause discomfort in the
participants. Ground truth BP measurements were taken during and
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Fig. 6: BP error distributions for each participant for the leave-one-
user-out cross-validation.

after each activity, in addition to one measurement at the very begin-
ning of the session, resulting in a total of 5 measurements per partic-
ipant. Meanwhile, the in-ear device and chest microphone recorded
data continuously for the entire session. There are 769 data points in
total after outlier removal. The groundtruth SBP is in the range [103
130] with mean of 113 and std of 6.4. The groundtruth DBP is in the
range [64 109] with mean of 77.9 and std of 12.
Evaluation procedure. The data collected from our prototype
is processed following the approach proposed in §2 to estimate
SBPear and DBPear . Since the ground truth (i.e., SBPcuff and
DBPcuff ) is not continuous and it takes around 30 seconds for the
ground truth device to finish the BP measurement, we assume the BP
values are the same for this 30-second window. To build our dataset
we use the sensor data (PPG and microphone) from 15s before and
15s after the timestamp at which the GT BP measurement was taken.

Further, two evaluation methodologies are followed. Firstly,
we adopt a leave-one-user-out cross-validation approach where data
from 9 users is used to fit the BP estimation models (see § 2.4) while
the data from the remaining user is used for evaluation. This ap-
proach gives an indication of performance on unseen data from dif-
ferent participants. Secondly, we build personalised models for each
participant by using 70% of the data to fit the model and the re-
maining to evaluate its performance. This method provides insights
into the potential benefits of user-specific calibration. For both ap-
proaches, we use mean error (ME), mean absolute error (MAE) and
standard deviation of the errors (SD) as evaluation metrics.

3.2. Results

Aggregated Analysis. Figures 4 and 5 show the results for all par-
ticipants for the leave-one-user-out (LOUO) and personalised mod-
els evaluation, respectively. For both evaluation approaches, we no-
tice that the mean error (BPear − BPcuff ) is very close to zero,
with few datapoints outside the confidence intervals (±1.96 of the
standard deviation of the error). However, in the LOUO case, the
datapoints are more sparse compared to the personalised models, in-
dicating larger error variations. Table 1 summarises the errors for
the two evaluation approaches. In both cases, the mean error and
standard deviation are in line with the AAMI recommendations (BP
estimation mean error should be less than 5.0 ± 8.0 mmHg).

Table 1: Metrics for the two evaluation approaches (see §3.1).
Leave One User Out Personalised Models

ME (SD) MAE (SD) ME (SD) MAE (SD)
SBP -0.11 (5.10) 4.07 (3.07) -0.15 (3.34) 2.50 (2.20)
DBP 0.03 (6.95) 5.61 (4.09) -0.03 (3.57) 2.42 (2.62)

Individual Participant Analysis. We delve deeper by plotting the
error distributions for each participant in Figures 6 and 7 for the
LOUO and personal models evaluation, respectively. From Figure 6
we observe large error variations across different participants, in par-
ticular for the DBP estimation. For some participants the median
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Fig. 7: BP error distributions for each participant for the person-
alised models evaluation.

Fig. 8: BP variations during the data collection from 1 participant.

error is low with limited interquartile range, while others have large
median errors and the values are spread further apart. We hypothe-
sise this might be caused by the limited sample size and hence the
limited generalisation to all participants. This is particularly true for
participants 8, 9 and 10, who have the largest error variations.

Figure 7 instead shows how using data from the same participant
to calibrate the BP estimation models results in lower median errors
and less error variation. The better performance of the personalised
models compared to the LOUO evaluation is expected since the lat-
ter is more challenging given that the fitted model is tested on un-
seen data from a different participant. This suggests that calibrating
the BP model for each participant would likely yield better accuracy
since the model would account for individual characteristics. How-
ever, the frequency at which the calibration needs to be performed
remains an open research problem which goes beyond the scope of
this work. We aim to consider it in future work.
Qualitative Visualisation. Figure 8 provides a visualisation of how
the combination of our earable device and processing technique pro-
vides a continuous BP estimate over time. From the figure we can
observe how the two activities performed by the participant resulted
in BP changes. The deep breathing exercise results in a slow and
gradual lowering of the BP which takes a few minutes, while dip-
ping the hand in clod water creates a quicker response in the partici-
pant’s BP. Our empirical evaluation suggests that we can accurately
measure BP through the proposed S1 and S2 markers and analyti-
cal models, therefore our system represents a promising solution for
in-ear non-invasive BP monitoring.

4. CONCLUSIONS

We presented a non-invasive BP estimation technique based on vas-
cular transit time measured, for the first time, exclusively from the
ear. Our intial results with 10 participants are promising, with mean
absolute errors of 4.07 mmHg and 5.61 mmHg for SBP and DBP,
respectively, both aligned with the AAMI precision range recom-
mendation. We acknowledge that the limited sample size and the
controlled experimental settings are limitations of this work. We
aim to address both in future work by collecting additional data and
exploring the effect of external noise and movement. Nevertheless,
we believe this work is a step towards unobtrusive BP monitoring
with earables.
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