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ABSTRACT
Edge accelerator is a class of brand-new purpose-built System On
a Chip (SoC) for running deep learning models efficiently on edge
devices. These accelerators offer various benefits such as ultra-low
latency, sensitive data protection, and high availability due to their
locality and are opening up interminable opportunities for build-
ing sensory systems in the real world. Naturally, in the context
of sensory awareness systems, e.g., IoT, wearables, and other sen-
sory devices, the emergence of edge accelerators is pushing us to
rethink how we design these systems at a personal-scale. To this
end, in this paper we take a closer look at the performance of a
set of edge accelerators in running a collection of personal-scale
sensory deep learning models. We benchmark eight different mod-
els with varying architectures and tasks (i.e., motion, audio, and
vision) across seven platform configurations with three different
accelerators including Google Coral, NVidia Jetson Nano, and Intel
Neural Compute Stick. We report on their execution performance
concerning latency, memory, and power consumption while dis-
cussing their current workflows and limitations. The results and
insights lay an empirical foundation for the development of sensory
systems on edge accelerators.
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1 INTRODUCTION
Personal-scale sensory systems are increasingly pushing the infer-
ence part of AI models to edge devices such as IoT, smartphones,
wearables, etc. This transition offers attractive benefits concerning
privacy, performance, and cost. In the last 18 months, this shift
has resulted in the emergence of a brand-new class of neural chips
aimed at inferences at the edge. The proposition is remarkable; for
the first time, we can move away from software accelerators and
push cloud-scale models into edge devices without compromising
accuracy. Naturally, these edge accelerators are uncovering exciting
opportunities for building powerful applications with complicated
learning objectives and demanding computations. There have been
several attempts to understand the performance characteristics
of human sensing models on smart devices like smartphones and
commodity devices [1, 13]. However, the characterisation of edge
accelerators is at a very early stage. To this end, we take a system-
atic look at a set of edge accelerators, their working principles, and
performance in executing a variety of human sensing models.

We benchmark seven different accelerator configurations (Google
Coral Dev Board, Google Coral Accelerator with Raspberry Pi (here-
inafter, RPi) 4B and 3B+, NVIDIA Jetson Nano with TensorFlow
GPU and TensorRT, and Intel Neural Compute Stick with RPi 4B and
3B+) running eight deep learning models with three tasks (motion,
audio, and image). We report on their execution performance con-
cerning memory, execution time, and energy overhead and share
insightful observations that lay an empirical foundation for both the
evolution of these accelerators and their usage in sensory systems.

In what follows, we first present the different accelerators and
their working principles. Then we discuss briefly the sensing mod-
els we use in the study, followed by the systematic report on per-
formance metrics of the accelerators for the models. Finally, we
conclude the paper by sharing key insights from this study.

https://doi.org/10.1145/3363347.3363363
https://doi.org/10.1145/3363347.3363363
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Coral Dev
Board

Coral Accelerator
+ RaspberryPi 3B+

Coral Accelerator
+ RaspberryPi 4B

NVIDIA
Jetson Nano

Intel NCS2
+ Raspberry Pi 3B+

Intel NCS2
+ Raspberry Pi 4B

CPU
Quad-Core
Cortex A53

Quad-Core
Cortex A53

Quad-Core
Cortex A72

Quad-Core
Cortex A57

Quad-Core
Cortex A53

Quad-Core
Cortex A 72

Memory 1 GB LPDDR4 1 GB LPDDR2 2 GB LPDDR4 4 GB LPDDR4 1 GB LPDDR2 2 GB LPDDR4

AI Chip Google EdgeTPU Google EdgeTPU Google EdgeTPU 128 Core
Maxwell GPU

Intel Movidius
Myriad X VPU

with 16 SHAVE cores

Intel Movidius
Myriad X VPU

with 16 SHAVE cores
On-Chip
Memory 8 MB 8 MB 8 MB Shared

with CPU
512 MB LPDDR4

+ 2.5 MB Centralized
512 MB LPDDR4

+ 2.5 MB Centralized
AI Chip Interface PCIe USB 2.0 USB 3.0 PCIe USB 2.0 USB 3.0

AI Chip OPs 4 TOPs 4 TOPs 4 TOPs 472 GFLOPs 1 TOPs 1 TOPs
Table 1: Specification of the hardware platforms used in the study.

2 STUDY PRELIMINARIES
2.1 Hardware Platforms
Different companies have proposed hardware solutions to accel-
erate the execution of deep learning algorithms at the edge of the
network. In this study, we consider seven different configurations
with three types of edge accelerators. Table 1 reports their hardware
specifications; we consider two TensorFlow frameworks for Jetson
Nano, Tensorflow GPU1 and TensorRT2.

Google Coral: In summer 2018, Google announced the edge
version of its Tensor Processing Unit (TPU) platform known as
EdgeTPU under the brand name Coral. The EdgeTPU is an appli-
cation specific integrated circuit designed to deliver up to 4 Tera
OPerationS (TOPS) per second using a power budget of 2 watts (2
TOPS/watt). This chip supports only signed integer operations at 8
and 16 bits and it comes with approximately 8 MB of on-chip RAM
used to cache the model’s parameters. Since this board has been
strictly designed for optimal inference, it currently supports only
TensorFlow Lite models that meet specific requirements [4] (e.g.,
parameter quantisation). The EdgeTPU is available in two flavours:
as dev-kit called Coral Dev Board (See Figure 1a) and as USB dongle
called Coral Accelerator. Coral Dev Board is a single board com-
puter that hosts onboard RAM, storage, and other peripherals. As
host device for the Coral Accelerator, we use Raspberry 4B (See
Figure 1b) and 3B+. The biggest difference between Raspberry Pi
(hereinafter, RPi) 4B and 3B+ regarding our benchmark study is the
AI chip interface. RPi 4B supports USB 3.0 (with a maximum rate
of 5 gigabits per second), whereas RPi 3B+ supports USB 2.0 (with
a maximum rate of 480 megabits per second).

Jetson Nano: In March 2019, NVIDIA has announced and made
available a new GPU-powered board, known as Jetson Nano, target-
ing the maker community (See Figure 1c). This board hosts a 64-bit
quad-core Arm Cortex-A57 CPU and an NVIDIA Maxwell GPU
with 128 CUDA-cores able to deliver up to 472 GFLOPs running
float operations. CPU and GPU share a common bank of 4 GB of
LPDDR4 RAM, which requires the tuning of the memory reserva-
tion between CPU and GPU. Since this board runs a full-fledged
operating system derived from Ubuntu, the board natively supports
TensorFlow 1.x compiled with GPU support and TensorRT 5.

1https://www.tensorflow.org/install/gpu
2https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

Intel NCS2: Intel has made available the new Intel Movidius
Myriad X Vision Processing Unit (VPU), a low-power System-on-
Chip (SoC) designed to accelerate deep-learning deployments and
computer vision applications. This chip includes several processors
and computing units optimised for high parallelism and DNN infer-
encemaking it capable of running up to 4 TOPSwith a power budget
of 1.5 watts. The VPU is available in two different in-package con-
figurations: without in-package additional RAM and with 4GBits
(512 MBytes) in-package RAM. Intel has released a USB 3.0 don-
gle known as Intel Neural Compute Stick 2 (NCS2) that hosts the
Movidius Myriad X VPU with 4GBit of RAM. This USB stick can
be plugged as a co-processor to speed-up the inference of neural
networks. NCS2 requires the model to be optimised using the Open-
VINO framework [9]. We also consider Raspberry Pi 4B (See Figure
1d) and 3B+ as the main board for benchmarking NCS2.

2.2 Compilation Workflow
Since edge accelerators have different constraints and requirements,
different optimisations need to be applied to fully exploit the hard-
ware acceleration. Figure 2 presents the required steps for the edge
accelerators we use for our benchmark study. In this paper, we
consider deep learning models that have been implemented with
native TensorFlow or with Keras with TensorFlow as backend.

Jetson Nano: The first step is to train the algorithm by apply-
ing full-precision training which outputs a model with parameters
expressed as 32bit floating-point numbers. Then, the model needs
to be frozen to convert all the inner variables to constant and make
the model ready for the inference phase and further optimisation.
The frozen model can natively run on the Jetson Nano using native
TensorFlowwith GPU support. Jetson Nano also supports TensorRT,
a library that optimises the execution of neural networks by replac-
ing the implementations of some layers with more efficient ones.
TF-TRT converter needs information including input tensor name
and shape, precision mode (FP16 or FP32), size of the inference
batch, and size of the reserved execution memory. The output is a
TensorFlow-TensorRT frozen model ready to be deployed.

Intel NCS2: Intel NCS2 also needs the full-precision frozen
model to generate a model compatible with it. Then, the model
is converted using the OpenVINO model optimiser [10], a cross-
platform tool that runs static analysis and adjustments of the model.
The optimiser needs only the shape of the input tensor and the
floating number precision (e.g., FP16). It returns a set of files, known
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(a) Google Coral Dev Board (b) Coral Accel. with RPi 4B (c) NVIDIA Jetson Nano (d) Intel NCS2 with RPi 4B
Figure 1: Hardware platforms used in the study.
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Figure 2: Compilation workflow

as Intermediate Representation (IR), that are used by the Inference
Engine API to run the model over the Movidius Myriad X VPU.

Google Coral: Since EdgeTPU does not support floating-point
parameters, it is essential to represent the model weights as signed-
integer numbers, i.e., quantisation. The EdgeTPU runtime supports
quantisation-aware training [5, 11]which performs parameter quan-
tisation at training time. The model is frozen after this step and then
converted to TensorFlow Lite format. As an alternative, from the
v12 of the EdgeTPU runtime, it supports post-training full-integer
quantisation [19]. This procedure quantises all the parameters and
activations without re-training the model. It requires a small and
representative dataset, which might be a part of the training set, to
define the quantisation range. Note that, while quantisation-aware
training requires the additional cost for re-training, higher accuracy
is achievable as it is generally more tolerant to lower precision val-
ues. The last step is to feed the quantised TensorFlow Lite model to
the EdgeTPU compiler [3]. The compiler verifies if the model meets
the requirements [4]. It statically defines how weights are allocated
in the Edge TPU on-chip memory and defines the execution of the
TensorFlow Lite graph on the acceleration hardware.

Although the model meets the requirements, it is possible that
some operations could not be supported by the EdgeTPU runtime.
Then, the compiler tags them as unsupported and forces the execu-
tion of those and subsequent operations on the CPU instead of TPU.
It is also possible that model’s weights do not fit in the TPU on-chip
memory but the operations are still executed on TPU. In this case,
the weights are dynamically streamed from off-chip memory, e.g.,
RAM, to the on-chip memory, introducing additional latency.

2.3 Deep Learning Sensing Models
We select a broad range of deep learning sensing models tailored
for motion, audio, and vision tasks which are key for personal-
scale sensing. Table 2 summarises the architectures and properties

of the models we benchmark. They cover diverse types of CNN
architecture, e.g., with and without auxiliary branches, residual
connections, depth-wise convolution, and fully connected layers.

Motion task: Motion sensors, e.g. accelerometer, gyroscope
and magnetometer, are crucial components in smart devices as
they provide rich information about user context [2, 20]. One of
the most desired applications of motion tasks is human activity
recognition (HAR). For the HAR model, we select Aroma [16]. It
consists of two hierarchical classifiers. The first classifier exploits 8
convolution layers to automatically learn low-level features from
the distribution of sensor data. These low-level features are then
classified into different simple activities, e.g., standing and walking,
using a fully connected layer and a softmax classifier. On top of this
classifier, an LSTMmodel is applied to learn and extract meaningful
complex activities, e.g., commuting, from temporal relationships
in the low-level features over time. However, since the current
accelerators do not support LSTM modules, we profile only the
convolutional part of the model.

Audio task: Audio understanding is always on the front line
of machine learning and enables a variety of sensing tasks. Using
edge accelerators is promising to enable on-device audio processing,
which provides clear benefits such as privacy assurance and low
latency. In this paper, we consider two different audio tasks, key-
word spotting and emotion recognition. Keyword Spotting is a vital
component in virtual assistant applications, e.g. Google assistant.
To this end, we use a deep keyword spotting (DKWS) model [15],
which is a three-layer deep convolutional neural network. It is ca-
pable of detecting several spoken keywords, e.g., yes and no. The
goal of emotion recognition task is to capture human psychological
state unobtrusively in daily lives using the speaker’s utterance. We
follow the implementation proposed in [12] which comprises of
3 CNN layers, a fully connected layer, and a softmax classifier to
classify four different emotions, including neutral, upset, happy,
and angry. For the benchmark, we focus only on the model execu-
tion and exclude the pre-processing steps such as the extraction of
Mel-Frequency Cepstral Coefficients (MFCC) features.

Image task: Image recognition is one of the most active areas of
machine learning withmany applications [14]. Given the popularity
of these models, we profile 5 different types of neural networks,
including SqueezeNet V1.0 [8], MobileNet V1 [6], EfficientNet [18],
Inception V1 [17], and DenseNet121 [7].

Thesemodels cover a variety of network architectures. SqueezeNet
introduced Fire modules which makes use of 1x1 convolution to
squeeze the number of input channels and a 3x3 filter to reduce the
total number of parameters. MobileNet V1 introduced depth-wise
convolution, which applies convolutions on each channel before
combining the filters to reduce the number of parameters. Recently
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Task Model Architecture Characteristic Parameters (Milions)

Motion Aroma (A) [16] CNN+DNN
+ Residual Connections Excluding LSTM 0.385

Audio Audio Classification [12] (Emotion Only) (E) CNN + FC No MFCC extraction 0.249
DKWS (D) [15] CNN + FC No MFCC extraction 0.923

Vision

SqueezeNet V1.0 (S) [8] CNN + FC Fire modules 1.235

MobileNet V1 (M) [6] CNN + FC Traditional and depthwise
convolution layers 4.232

EfficientNet-EdgeTPU (E2) [18] CNN + FC Traditional CNN 5.440
Inception V1 (I) [17] CNN + FC Inception Modules 6.618

DenseNet121 (D2) [7] CNN + FC
+ Residual Connections

Each Layer is connected to
all the previous layers 7.978

Table 2: Specification of sensing models used in the study.

Google has developed EfficientNet – a new family of CNN archi-
tecture which can be optimised for different platforms; we use
EfficientNet-EdgeTPU, which is optimised for the Google EdgeTPU.
EfficientNet utilises architectural search (grid search on depth and
width) to find a near-optimal architecture, which optimises both
depth and width of a neural network. Inception V1 includes 22 con-
volution layers with branches of 1x1, 3x3 and 5x5 convolutions and
a fully connected layer. DenseNet121 contains both convolution
layers and Dense blocks which maintain residual connections from
one layer to all previous layers in the same block.

2.4 Scope of the benchmark
Our goal is to investigate the resource characteristics of edge accel-
erators under a range of deep learning sensing models. However,
there are a number of compilation and optimisation parameters that
affect the resource characteristics and inference accuracy as well.
For example, for the precision mode, FP16 (half-precision point)
could occupy less memory and lower inference latency compared to
FP32 (full-precision point), but could result in accuracy degradation.
In this paper, as an initial step, we select personal-scale sensing
models as a key independent variable and aim at investigating their
resource characteristics. To this end, we set the compilation and
optimisation parameters to the default values used in each edge
accelerator. For example, for the precision mode, we used FP32 and
FP16 for TensorFlow GPU and TensorRT on Jetson Nano, respec-
tively. Intel NCS2 was also set to FP16. We leave the investigation
of the compilation and optimisation parameters and their impact
on the accuracy as future work.

In this aspect, we do not include other operations into the bench-
mark, which are required for the entire sensing pipeline such as
sensing, data transmission, and data management. It is because
their resource characteristics are not affected by edge accelerators.

3 PERFORMANCE BENCHMARKS
We conduct a set of benchmarks to characterise the resource usage
of personal-scale sensing models on edge accelerators. We consider
end-to-end model performance metrics of memory usage, execution
time, and energy consumption. Given the proprietary nature of each
accelerator and the limited availability of APIs, we could not include
accelerator-related metrics such as TPU usage. We expect that the
outcome of these experiments uncovers the feasibility of running
sensing models and applications on edge accelerators.

3.1 Experimental Setup
To systematically explore the resource characteristics, we develop a
benchmark script that executes the sensing models repeatedly and
measures memory usage and execution time. We perform 20,000
separate inferences for every model on each platform and report
the average figures. For all the experiments, we use a batch size
of 1 to consider applications where the models need to process
and label sensory inputs as quickly as possible, without additional
latency introduced by batching several data points. For energy
measurements, we use a Monsoon Power monitor.

We consider three steps in the model lifetime: loading, warm-up,
and inference. In the loading, the model is loaded into the accelera-
tor’s on-chip memory. The warm-up refers to the first execution of
the model, and the inference is for the subsequent executions. We
separate the warm-up from the inference since accelerator run-time
completes hardware initialisation (e.g., model caching and memory
allocation) upon the first request of the model execution.

3.2 Memory Usage
We investigate the memory footprint, which is known to be a key
resource bottleneck in the processing of deep learning models on
embedded devices due to the large amount of parameters.

The first observation is that, when a model is executed on an
accelerator, the memory is gradually allocated at three different
times: (1) when the model is loaded, (2) at the first inference (warm-
up) and (3) during subsequent inferences. It is important to notice
that the loading and warm-up memory remains allocated for all
subsequent inferences and it is deallocated only when the model is
unloaded. We further discover that the way the memory is handled
depends on the hardware architecture of the accelerator and also on
its runtime software. For the accelerators with on-chip dedicated
memory, i.e., Coral Dev (Figure 3a), Coral Accelerator, and NCS2
(Figure 3b), the compilation pipeline optimises the model to keep
as much of the network as possible on the on-chip memory to
ensure low latency access, thereby resulting in low utilisation of the
memory on the host device. Even for large models (e.g., EfficientNet,
Inception V1 and DenseNet), we observe that only 13–18 MB are
allocated during the loading and the warm-up phases on the host
memory of the Coral Dev Board and on the Raspberry Pi memory
used with the Coral Accelerator. Also on the Intel NCS2, the host
memory allocated is a bit higher than the Coral devices, but still
marginal. For example, the largest amount of allocated memory is
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(a) Coral Dev (b) NCS2 (c) Nano(GPU)
Figure 3: Host devicememory footprint (notice the different
scale for the y-axis).

Figure 4: Execution time on different platforms.

for the EfficientNet model with about 50 MB of memory allocated
for loading and warm-up (for the same model only 14 MB are
allocated when using the Coral devices). For the inference phase,
the host memory used is even lower, we measure less than 10 KB
across all models both on Coral devices and NCS2.

On the Jetson Nano, however, we notice that significant more
memory is allocated during loading and warm-up, as shown in
Figure 3c for the Tensorflow GPU runtime. Only between 1 MB and
10 MB are used during inference instead. We hypothesise that this
is because the TensorFlow runtime is not optimised for constrained
devices with limited memory. The implication is that, since on Nano
the memory is shared between the CPU and the GPU (i.e., there is
no dedicated memory for the GPU), the more memory is used for a
deep learning model the less is available for the operating system
and other processes running on the CPU. As a consequence, we
could not run the large models (MobileNet, EfficientNet, Inception,
and DenseNet), because the free memory is not enough to load
and perform the warm-up phase of these models. This is important
because a real system would need to execute other tasks in addition
to the model inference (e.g., communication, user interface and
data logging) requiring memory for each of these tasks. This might
become impossible if most of the free memory is consumed by
model execution, as on the Jetson Nano. Therefore we observe that
devices with dedicated on-chipmemory andwith software pipelines
capable of optimising the models’ memory requirements, such as
Coral Dev, Coral Accelerator and NCS2, are preferable for systems
which need to run processes in addition to the model execution.

3.3 Execution time
We look into the execution time of the model inference, which is a
key metric for sensory systems that need to react quickly to input
data. Figure 4 shows the inference time for different platforms. The
results show a couple of interesting findings. First, the execution
time is largely different, depending on the edge platform. In general,
Coral Dev and Coral (RPi 4B) outperform other platforms. For
example, one execution of the SqueezeNet model takes 2 ms both

(a) Coral Dev (b) NCS2 (RPi 4B) (c) Nano (GPU)
Figure 5: Execution time for loading and warm-up opera-
tions. X-axis reports shortened model names as in Table 2.

on Coral Dev and Coral (RPi 4B), whereas it takes 11 ms, 29 ms, and
26 ms on NCS2 (RPi 4B), Nano (GPU), and Nano (RT), respectively.

Second, as expected, the inference is faster for simpler models.
For example, the execution time on Coral Dev is 0.5, 0.5, 3.5, 2.1,
2.7, 4.2, and 10.9 ms for Aroma, Emotion, DKWS, SqueezeNet, Mo-
bileNet, Inception, and DenseNet (see Table 2 for the number of
parameters). DenseNet is the slowest on the Coral devices because
the entire model cannot be allocated on the on-chip accelerator’s
memory (∼8 MB) and therefore part of the parameters were allo-
cated on the host memory (1.9 MB). This causes additional latency
because parameters need to be moved between the host memory
and the accelerator on-chip memory. The trend showing that sim-
pler models run faster is observable also on different platforms.
However, NCS2 (RPi 4B) is an exception to this tendency. The
execution time of DKWS is 47 ms, whereas that of SqueezeNet,
MobileNet, and Inception is 11ms, 25ms, and 22ms. We hypothesise
that this is because DKWS has an unusual kernel size in its first
convolutional layer (i.e., 8x20) which translates to heavy compu-
tation on the input data and possibly causes inefficiency because
the Movidius chip is not optimised for this kernel size. We find
a similar behaviour on EfficientNet and DenseNet with the Intel
NCS2. While the number of parameters of EfficientNet is lower
than that of DenseNet, its execution time is much higher on the
Intel NCS2. We conjecture that this is because EfficientNet has been
designed and optimised for the EdgeTPU architecture.

We delve deeper into the execution time of the loading and
warm-up steps as shown in Figure 5. We omit the results of Coral
(RPi 4B) and Nano (RT) since they show a similar trend to Coral
Dev and Nano (GPU), respectively. Interestingly, edge platforms
show different tendency. We notice that the loading and warm-up
times for all models on Coral Dev are always below 30 ms while
the NCS2 and Jetson Nano take several seconds. Knowing loading
and warm-up times of these accelerators is important in reactive
systems where different models need to be executed on-demand
to respond to certain sensory inputs. In this context, models are
dynamically loaded to perform a few inferences and then unloaded.
Large loading and warm-up times will reduce the performance
of the system, making it difficult to promptly respond to input
data. From our benchmarks, we can conclude that Coral Dev is
suitable to support reactive systems where multiple models need
to be loaded and unloaded over time while NCS2 and Jetson Nano
are more suitable for applications where a single model is used for
long periods of time, amortising the loading and warm-up cost.
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Figure 6: Energy consumption on different platforms.

Coral Dev Coral (RPi 4B) NCS2 (RPi 4B) Nano
2.1 4.2 3.6 1.2
Table 3: Idle power of platforms (W).

3.4 Energy
Energy is a precious resource in battery-powered edge accelera-
tors. Here, we define the energy overhead as the energy which is
additionally consumed for the model execution. To obtain the net
energy increase, we measure the difference between the average
power consumed during the model execution and when the board
is idle, and then multiply it by the model execution time.

Interestingly, as shown in Figure 6, the energy overhead varies
much depending on the accelerator. For example, Coral Dev and
Coral (RPi 4B) mostly consume less than 10mJ for a single execution
regardless of the model; the only exception is DenseNet on Coral
Dev (18.8 mJ). On the other hand, the energy overhead ranges
from 5 mJ to 274 mJ on NCS2 (RPi 4B) and Jetson Nano. We can
also observe that the TensorFlow framework largely impacts the
energy overhead, even with the same platform. On Jetson Nano,
TensorFlow GPU generally consumes more energy than TensorRT.
This is probably because TensorFlow GPU is not optimised for
energy efficiency and it takes longer as well for the model execution.

Table 3 shows the power draw in the idle state, i.e., when no
operation is being executed. Interestingly, the power also varies
much depending on the hardware specification. We notice that the
devices that are self-contained (i.e., Coral Dev and Jetson Nano)
draw less power when idle compared to the accelerators which
require an host device to operate (i.e., NCS2 and Coral Accelerator).
In fact, the power draw of the Raspberry Pi 4B alone is 2.9 W. We
omit the energy overhead of the loading and warm-up operations.
They have relatively little impact on the battery life as they need
to be executed only once.

3.5 Performance Comparison (RPi 4B and 3B+)
According to the hardware specification, the main difference be-
tween RPi 4B and 3B+ is the interface with AI Chip as described
in Table 1, i.e, USB 2.0 on RPi 3B+ and USB 3.0 on RPi 4B. In this
subsection, we quantify the impact of the interface on the perfor-
mance of the model execution. Here, we focus on the latency and
power consumption, which are mainly affected by the interface.

Execution time: Figure 7a shows the execution time of Coral
Accelerator; we omit the result on NCS2 due to the page limit. As
expected, RPi 4B takes a shorter time than RPi 3B+ by virtue of its
fast transmission via USB 3.0. Interestingly, the performance gap,
i.e., the difference of the execution time between RPi 4B and RPi
3B+, is different depending on the type of the accelerator. With

(a) Execution time (b) Energy overhead
Figure 7: Performance comparison between RPi 4B and 3B+

the Coral accelerator, the ratio of RPi 3B+ to RPi 4B ranges from
3.1 (EfficientNet) to 7.3 (DenseNet). However, with Intel NCS2, the
ratio mostly remains less than 1.7, except the SqueezeNet (2.4).

Energy: We also compare the energy overhead as shown in
Figure 7b. The results show that, in general, RPi 3B+ consumesmore
energy for the model execution; the only exception is DKWS on
Intel NCS2. The main reason is due to the increase in the execution
time. However, the idle power of RPi 3B+ is much lower than RPi 4B.
The idle power of RPi 3B+ is 2.4W and 2.8Wwith Coral Accelerator
and Intel NCS2, respectively. This makes the average power of RPi
4B during the model execution (including the idle power) higher
than that of RPi 3B+. For example, the average power of the Aroma
model on RPi 4B is 5.0 W, whereas that on RPi 3B+ is 2.9 W. In this
aspect, we estimate that the battery life of RPi 3B+ will be longer
than that of RPi 4B assuming a battery with the same capacity.

4 OUTLOOK
We attempted to characterise the resource performance and suit-
ability of personal-scale sensory models on a wide variety of edge
accelerators. Beyond the numbers, our study further offers useful
insights for the development of personal sensing system on top
of the edge accelerators. First, as described in 2.2, the execution
path of deep learning models on edge accelerator is not optimised,
yet. For example, on Google Coral platforms, if an operation in the
model is tagged as unsupported, the execution path is statically de-
termined by putting the whole subsequent operations (including the
untagged one) to CPU. It implies that the position of the untagged
operation affects the performance of the model significantly. Sec-
ond, the interface between CPU and AI chip is a critical bottleneck.
As reported in Section 3.5, even with the same Coral accelerator,
USB 3.0 accelerates the execution time by three to seven times
compared to USB 2.0. Last, careful scheduling is needed to support
multiple sensing models. This is because the dynamic change in
sensing models incurs a significant overhead, e.g., as shown in the
cost of loading and warmup on Jetson Nano (Section 3.3).

For the automated and scalable benchmark, we prototyped an
end-to-end benchmarking toolkit. As a core component for the
resource benchmark, it takes a sensing model and a target platform
as input. Then, it converts the given model to the platform-specific
model binary as described in Figure 2 and performs the benchmark.
As future work, we envision this toolkit as a full-fledged, compre-
hensive framework for edge accelerators. If developers provide the
sensing model, the test dataset, and the execution requirements, e.g.,
latency, accuracy, and energy budget, the toolkit can automatically
test the given model on various edge accelerators in the background
and recommend the most suitable platform providing an in-depth
report on the expected performance.
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